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Abstract
Spatial transcriptomics has transformed genomic research by mea-
suring spatially resolved gene expressions, allowing us to inves-
tigate how cells adapt to their microenvironment via modulating
their expressed genes. This essential process usually starts from
cell-cell communication (CCC) via ligand-receptor (LR) interaction,
leading to regulatory changes within the receiver cell. However,
few methods were developed to connect them to provide biological
insights into intercellular regulation. To fill this gap, we propose
iMiracle, an iterative multi-view graph neural network that models
each cell’s intercellular regulation with three key features. Firstly,
iMiracle integrates inter- and intra-cellular networks to jointly es-
timate cell-type- and micro-environment-driven gene expressions.
Optionally, it allows prior knowledge of intra-cellular networks as
pre-structured masks to maintain biological relevance. Secondly,
iMiracle employs iterative learning to overcome the sparsity of spa-
tial transcriptomic data and gradually fill in the missing edges in the
CCC network. Thirdly, iMiracle infers a cell-specific ligand-gene
regulatory score based on the contributions of different LR pairs to
interpret inter-cellular regulation. We applied iMiracle to nine sim-
ulated and eight real datasets from three sequencing platforms and
demonstrated that iMiracle consistently outperformed ten meth-
ods in gene expression imputation and four methods in regulatory
score inference. Lastly, we developed iMiracle as an open-source
software and anticipate that it can be a powerful tool in decoding
the complexities of inter-cellular transcriptional regulation.
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1 Introduction
In eukaryotic organisms, precise spatial and temporal regulation
of transcription is crucial for a range of fundamental biological
processes, from development to adaptation to disease progression
[6, 15, 16, 39–41, 57]. Thanks to concerted community efforts and
technological advancements, there has been a remarkable leap over
the past decades in our understanding of transcription regulation
within individual cells [4, 7, 17, 23, 56, 59]. Thus, it has opened
avenues for therapeutic strategies targeting specific transcriptional
pathways and mechanisms [28]. While the current use of tran-
scriptional technologies is promising, cells live in an organized
combination of extracellular matrix, cells, and interstitial fluid that
jointly influence gene expression [11, 46]. Aberrations in such in-
tercellular communications within this spatial context may disrupt
gene expression profiles, ultimately leading to cellular changes and
pathogenic outcomes [24]. Despite its importance, the exploration
of inter-cellular communication and its downstream impacts on
transcriptional regulation remains underdeveloped. This gap limits
our ability to fully understand multi-cellular functions and their
implications for health and disease, highlighting an urgent need
for new computational efforts.

To bridge this gap, we propose a novel, iterative multiview graph
neural network (GNN) model named iMiracle to investigate inter-
cellular transcriptional regulation for each cell. This model is de-
signedwith three distinct features to tackle the current challenges.
First, iMiracle integrates inter- and intra-cellular networks for ac-
curate expression imputation using ligand-receptor interactions
with neighboring cells. Optionally, it allows users to include prior
knowledge of intra-cellular networks, such as protein-protein in-
teraction network (PPI) and gene regulatory network (GRN), as
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Figure 1: Overview of iMiracle. iMiracle initiates with a sparse cell-by-gene matrix X𝑜𝑏𝑠 ∈ R𝑛×𝑚 (𝑛 cells and𝑚 genes), spatial
coordinates C ∈ R𝑛×2, and cell type information T ∈ R𝑛×𝑡 (𝑡 cell types). It constructs multi-view cell-cell communication
networks GC to model various ligand-receptor interactions. Node embeddings for each cell are generated per view through a
graph neural network. Amultilayer perceptron then decodes gene expression X̂𝑠 influenced by these LR interactions, integrating
knowledge from an established gene regulatory network. iMiracle isolates the baseline gene expression matrix X̂𝑏 solely
determined by cell types. The final imputed gene expression matrix X̂ merges the baseline matrix with expressions from
ligand-receptor interactions. Through iterative learning, X̂ is used to progressively refine the multi-view graph, enhancing
both imputation precision and the inference of ligand-to-gene regulatory scores.

pre-structured masks to boost biological relevance [9]. Second,
iMiracle employs iterative learning to gradually fill in the missing
edges in the cell-cell communication (CCC) network, circumvent-
ing the limitations posed by the sparsity of spatial transcriptomic
data. Lastly, iMiracle infers a cell-specific ligand-gene regulatory
score based on the contributions of different LR pairs to interpret
inter-cellular regulation.

We applied iMiracle to nine simulated and eight real datasets
across three sequencing technologies for comprehensive perfor-
mance benchmarking. We found that iMiracle consistently outper-
forms ten methods in the gene expression imputation task and four
methods in the regulatory score inference task. Lastly, we devel-
oped iMiracle into an open-source software package1 to facilitate
its use by the scientific community for investigating inter-cellular
transcriptional regulation at the individual cellular level. With the
rapid expansion of spatial transcriptomics data, we anticipate that
iMiracle will be a powerful tool in decoding the nuances of CCC in
complex tissues, thus enriching our understanding of inter-cellular-
level ligand-gene regulatory impacts.

1https://github.com/aicb-ZhangLabs/iMiracle

2 Related Work
single-cell RNA sequencing (scRNA-seq) technology allows simulta-
neous gene expression profiling over thousands of cells, providing
new opportunities to decipher inter-cellular transcriptional reg-
ulation [10, 21, 27, 42, 50]. Numerous methods have emerged to
construct CCC networks based on ligand-receptor (LR) expression
profiles [25]. While useful at their onset, they only focus on inter-
cellular communication probabilities and do not delve into the
transcriptional impacts on receiver cells. Later on, several methods
were proposed to fill this gap by combining inter- and intra-cellular
communications to link ligand genes from the sender cells directly
to the target genes of the receiver cells. For example, NicheNet
[3] combines inter-cellular CCC networks with prior knowledge
of intra-cellular signaling and GRN to predict ligand-target gene
regulatory scores. Cytotalk [60], on the other hand, combines cell-
type-specific gene-co-expression networks with CCC networks to
infer the regulatory potential of ligands on target genes. However, a
challenge persists: scRNA-seq experiments require cell dissociation
from their native tissue context, posing difficulties for accurate
cell-specific inter-cellular regulatory relationship inference.
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Current advancements in spatial transcriptomics have enabled
spatially resolved gene expression profiling, enhancing our ability
to explore transcription regulation within their native microen-
vironments [22, 32, 36]. Therefore, several computational meth-
ods were developed to utilize this new type of data. For instance,
HoloNet [29] employed a multiview GNN to reconstruct gene ex-
pression and utilized an attention mechanism to calculate cell-type
level ligand-gene regulatory score. However, the inherently sparse
nature of spatial transcriptomics presents challenges in fully delin-
eating the CCC network, resulting in an incomplete understanding
of inter-cellular gene regulation [1]. Furthermore, it still lacks the
granularity needed to explore ligand regulatory impacts at the level
of individual cells.

3 Method
3.1 Method overview
As shown in Fig. 1, our iMiracle model contains two key modules:
1) an iterative GNN for accurate gene expression imputation of
individual cells using a multi-view CCC network among LR pairs;
2) cell-specific regulatory score inference from ligand genes (in
sender cells) to target genes (in receiver cells). Formally, given the
observed sparse cell-by-gene matrix X𝑜𝑏𝑠 ∈ R𝑛×𝑚 (𝑛 cells and𝑚
genes), the spatial coordinates C ∈ R𝑛×2, and the cell type informa-
tion T ∈ R𝑛×𝑡 (𝑡 is the number of cell types), iMiracle imputes the
dense gene expression matrix as X̂ ∈ R𝑛×𝑚 and provides a ranked
list LR𝛾 [𝑐, 𝑔] to infer the regulatory score for cell 𝑐 and gene 𝑔.

In its imputationmodule, iMiracle uniquely breaks down gene ex-
pression X̂ into two distinct components: firstly, a cell-type-specific
baseline expression X̂𝑏 ∈ R𝑛×𝑚 , which is determined by the cell
type, and secondly, a cell-specific expression X̂𝑠 ∈ R𝑛×𝑚 , which
is influenced by the micro-environment through CCC. As shown
in Fig. 1, iMiracle integrates a multi-view inter-cellular CCC net-
work with either a Multi-Layer Perceptron (MLP) or an optional
pre-defined GRN/PPI to predict X̂, X̂𝑏 , and X̂𝑠 . Then, iMiracle it-
eratively updates the LR pairs based on the imputed gene expres-
sions, repeating the estimation process until convergence. In its
second module, iMiracle infers ligand-target gene regulatory score
based on the contribution of each LR pair to a gene of interest in
a cell-specific manner. We will introduce the model details in the
following sections.

3.2 Module 1: Gene expression imputation via
an iterative GNN

iMiracle imputes the gene expression matrix X̂ without reference
scRNA-seq data via three steps: constructing a multi-view CCC net-
work, integrating inter- and intra-cellular networks, and iterative
learning, as detailed below.

Multi-view CCC network construction. As shown in Fig. 1,
for each LR pair, we calculate the communication probability for
each cell by synthesizing gene expression information and spatial
distance, represented by G𝑙𝑟

𝐶
. Then we combine all LR pairs’ CCC

information via a multi-view network G𝐶 = ∪𝑙𝑟G𝑙𝑟
𝐶
, where ∪ is the

view aggregation. The CCC construction requires three steps:
Step 1: identify expressed LR pairs. Starting with LR pairs from

CellChatDB [25] (3,267 pairs for humans and 3,387 for mice), we

extract the expression level for ligand 𝑙 and receptor 𝑟 from X𝑜𝑏𝑠 .
We define S𝑙 and S𝑟 as the sets of expression levels for 𝑙 and 𝑟 ,
respectively, and compute their geometric means as E𝑙 = 𝑔𝑚𝑒𝑎𝑛(S𝑙 )
and E𝑟 = 𝑔𝑚𝑒𝑎𝑛(S𝑟 ), each in R𝑛×1. Then proportions of expressed
cells are: 𝜉𝑙 = 1

𝑛

∑𝑛
𝑖=1 1{E𝑙 [𝑖] > 0} and 𝜉𝑟 = 1

𝑛

∑𝑛
𝑖=1 1{E𝑟 [𝑖] > 0}.

One LR pair is considered expressed if both 𝜉𝑙 and 𝜉𝑟 exceed the
predefined threshold 𝜃 (set at 15% by default), forming the set of
biologically active LR pairs:

LR𝜃 = {𝑙𝑟 |𝜉𝑙 > 𝜃 ∧ 𝜉𝑟 > 𝜃 }. (1)

Step 2: calculate the distance for each cell. The Euclidean distance
between cell 𝑐1 and cell 𝑐2 is calculated using their spatial coor-
dinates (C[𝑐1, :] and C[𝑐2, :]). This results in the distance matrix
D ∈ R𝑛×𝑛 , capturing the spatial proximity of cells.

Step 3: compute the CCC network with gene expression. For each
𝑙𝑟 ∈ LR𝜃 , the CCC network G𝑙𝑟

𝐶
is computed:

G𝑙𝑟
𝐶 = (E𝑙 ⊗ E𝑟 ) ⊙ D−1 . (2)

The outer product ⊗ yields a matrix where each entry signifies
the combined expression of 𝑙 and 𝑟 for each cell pair. Element-
wise multiplication ⊙ merges this spatial data into the interaction
strength assessment. Combining G𝑙𝑟

𝐶
for all LR pairs results in the

multi-view CCC networkG𝐶 , enabling iMiracle to effectively model
diverse CCC patterns.

Inter- and intra-cellular networks integration. iMiracle inte-
grates inter- and intra-cellular networks to infer gene expressions in
individual cells. For each 𝑙𝑟 pair, the GNN outputs node embeddings
to capture CCC’s impact from 𝑙𝑟 as

H𝑙𝑟 = 𝐺𝑁𝑁 (T,G𝑙𝑟
𝑐 ), (3)

where H𝑙𝑟 ∈ R𝑛×𝑑 is the 𝑑-dimensional node embedding inferred
from the 𝑙𝑟 -specific 𝐺𝑁𝑁 . To model the intra-cellular regulation,
iMiracle transforms H𝑙𝑟 into a gene expression matrix for each 𝑙𝑟
pair, followed by a shared decoder:

X̂𝑙𝑟
𝑠 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (H𝑙𝑟 ) . (4)

Here X̂𝑙𝑟
𝑠 ∈ R𝑛×𝑚 reflects the gene expression regulated by the

specific 𝑙𝑟 interactions. The decoder, typically implemented as an
MLP, is designed to map each cell’s embedding to its gene expres-
sion vector. Optionally, iMiracle can integrate the pre-structured
GRN/PPI via:

X̂𝑙𝑟 ′
𝑠 = X̂𝑙𝑟

𝑠 ⊙ M𝑙𝑟 , (5)
where M𝑙𝑟 ∈ R𝑚 is a binary mask derived from the GRN/PPI,
with ones representing possible regulation and zeros otherwise. In
addition, iMiracle uses an MLP to capture baseline gene expression
profiles that are solely influenced by cell type:

X̂𝑏 = 𝑀𝐿𝑃 (T) . (6)

Then iMiracle synthesizes the cell-type-specific and cell-specific
expression as the final gene expression X̂:

X̂ = X̂𝑏 +
∑︁

𝑙𝑟 ∈LR𝜃
X̂𝑙𝑟 ′
𝑠 . (7)

Iterative learning. Spatial transcriptomic data usually has ex-
cessive missing values in X𝑜𝑏𝑠 , leading to incomplete CCC estima-
tion and thus limiting the imputation performance. To address this
issue, iMiracle employs iterative learning to gradually refine the
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Table 1: Summary of simulation data parameters.

ID 𝑘𝑏 𝑟 (𝑛ℎ, 𝑝ℎ) (𝑛𝑙 , 𝑝𝑙 ) (𝑛𝑐 , 𝑝𝑐 )
1 2 10 (8, 0.5) (2, 0.8) (4, 0.8)
2 2 10 (8, 0.5) (2, 0.8) (8, 0.8)
3 5 10 (8, 0.5) (2, 0.8) (4, 0.8)
4 5 10 (8, 0.5) (2, 0.8) (8, 0.8)
5 5 10 (8, 0.5) (4, 0.8) (4, 0.8)
6 5 10 (8, 0.5) (4, 0.8) (8, 0.8)
7 5 20 (8, 0.5) (2, 0.8) (4, 0.8)
8 10 10 (8, 0.5) (2, 0.8) (8, 0.8)
9 20 10 (8, 0.5) (2, 0.8) (8, 0.8)

multi-view graph G𝐶 based on the imputed expression matrix X̂.
Specifically, after the 𝑖-th training iteration, LR(𝑖+1)

𝜃
is updated as:

LR(𝑖+1)
𝜃

= {𝑙𝑟 |𝜉 (𝑖+1)
𝑙

> 𝜃 ∧ 𝜉
(𝑖+1)
𝑟 > 𝜃 }. (8)

Here 𝜉
(𝑖+1)
𝑙

and 𝜉
(𝑖+1)
𝑟 represent the updated proportions of ex-

pressed cells, which are computed using the updated X̂(𝑖+1) . We
next update the CCC network for each LR pair that exists in both
LR(𝑖 )

𝜃
and LR(𝑖+1)

𝜃
. Combining previous CCCnetworkG𝑙𝑟

𝑐
(𝑖 ) ,G𝑙𝑟

𝑐
(𝑖+1)

is updated as:

G𝑙𝑟
𝑐

(𝑖+1)
= 𝛼G𝑙𝑟

𝑐

(𝑖 ) + (1 − 𝛼)G𝑙𝑟
𝑐

(𝑖+1)
. (9)

A blending coefficient 𝛼 harmonizes the contributions from both
old and new estimates to ensure a smooth update. For LR pairs in
LR(𝑖+1)

𝜃
but not in the LR(𝑖 )

𝜃
, they directly form new CCC networks:

G𝑙𝑟
𝑐
(𝑖+1) , which is derived from X̂(𝑖+1) . Merging existing and newly

added CCC networks, we have:

G(𝑖+1)
𝐶

= ∪
𝑙𝑟 ∈LR(𝑖+1)

𝜃

G𝑙𝑟
𝑐

(𝑖+1)
. (10)

Model training and hyperparameter tuning. During the
training phase, iMiracle aims to minimize the Mean Squared Error
(MSE) between X̂ andX𝑜𝑏𝑠 . The loss function is particularly focused
on non-zero entries of X𝑜𝑏𝑠 :

L =

∑𝑛
𝑖=1

∑𝑚
𝑗=1 1[𝑋𝑜𝑏𝑠,(𝑖, 𝑗 ) ≠ 0] (𝑋 (𝑖, 𝑗 ) − 𝑋𝑜𝑏𝑠,(𝑖, 𝑗 ) )2∑𝑛

𝑖=1
∑𝑚

𝑗=1 1[𝑋𝑜𝑏𝑠,(𝑖, 𝑗 ) ≠ 0] , (11)

where 1[·] is an indicator that equals 1 if 𝑋𝑜𝑏𝑠,(𝑖, 𝑗 ) ≠ 0 and 0
otherwise. We will stop the iteration if no new views can be added,
as it suggests a saturation in constructing a full CCC.

We developed iMiracle using PyTorch version 1.12.1, operational
on an Nvidia GeForce RTX A6000 GPU. Our computational setup
is powered by an AMD EPYC 7302 16-Core Processor (1.0 TiB of
memory) and operates on the Ubuntu 20.04.1 LTS system. In the
gene imputation process, if there’s no decrease for 10 consecutive
epochs, we terminate the training and proceed to evaluate whether
there’s a need to update views. For the ligand-target gene regulatory
score inference, training is halted if the loss fails to reduce by more
than 0.001 over 10 successive epochs, after which we assess the
necessity of updating views. For both tasks, we set the hidden
dimension 𝑑 to 32, the blending coefficient 𝛼 to 0.2, the number of
neighbors 𝑘 to 5 for graph construction, a default two GNN layers,
the maximum number of epochs to 1000, and use a learning rate of
0.01 with the Adam optimizer (details in the parameter analysis).

Table 2: Summary of real datasets.

Platform Organism Sample
ID

Raw Matrix
(Cell, Gene)

Raw
Density

Filter Matrix
(Cell, Gene)

Filter
Density

# Imputed
Entries

10xVisium

Human
Dorsolateral
Prefrontal
Cortex
(DLPFC)

151507 4226, 33538 0.042 4147, 4028 0.262 437240
151508 4384, 33538 0.036 4148, 3342 0.258 358184
151509 4789, 33538 0.043 4700, 4188 0.258 508186
151510 4643, 33538 0.041 4547, 3908 0.259 461112
151669 3661, 33538 0.054 3617, 5246 0.277 525930
151670 3498, 33538 0.050 3433, 4909 0.272 457770

Stereoseq Mouse / 19109, 14376 0.024 4036, 1581 0.193 123444
SlideseqV2 Mouse / 20139, 11750 0.031 5161, 2611 0.217 292418

3.3 Module 2: Cell-specific regulatory score
inference

After training, iMiracle aims to identify ligands (in sender cells)
that significantly impact gene expression (in receiver cells). For a
specific cell 𝑐 and gene 𝑔, the 𝑙𝑟 -related regulatory score𝜓 (𝑙𝑟 , 𝑐, 𝑔)
is defined as:

𝜓 (𝑙𝑟 , 𝑐, 𝑔) = X̂𝑙𝑟 ′
𝑠 [𝑐, 𝑔] . (12)

Here X̂𝑙𝑟 ′
𝑠 [𝑐, 𝑔] represents the 𝑙𝑟 -regulated strength for cell 𝑐 and

gene 𝑔. Based on𝜓 (𝑙𝑟, 𝑐, 𝑔), iMiracle evaluates 𝑙𝑟 pairs within LR𝜃
and gives a ranked list:

LR𝛾 [𝑐, 𝑔] = sort[𝑙𝑟 ∈ LR𝜃 ,𝜓 (𝑙𝑟 , 𝑐, 𝑔) descending order] . (13)

LR𝛾 [𝑐, 𝑔], ordered by regulatory score, enables iMiracle to pinpoint
key LR pairs affecting gene regulation in individual cells, offering
insights into inter-cellular regulation dynamics.

3.4 Simulation details
Following [29], we created simulated data, which includes 1000
cells in a 100-unit square space, for benchmarking. We assigned cell
types based on their locations (using a parameter 𝑘𝑏 that controls
the mixing of cell types) and modeled gene expression for 50 genes
(using a negative binomial distribution with high: (𝑛ℎ, 𝑝ℎ) and low:
(𝑛𝑙 , 𝑝𝑙 )). To simulate CCC, 50 LR pairs were selected, with specific
high-expression areas (a radius of 𝑟 units and (𝑛𝑐 , 𝑝𝑐 )) designated
for intensified interactions. Gene expressions were updated to re-
flect these selected LR interactions. Next, we randomly masked
the simulated data, maintaining a density of 20% to reflect the spa-
tial data’s sparsity. To ensure fairness, we designed nine different
settings (Table 1) and reported performance across varied settings.

3.5 Data preprocessing and experimental setup
Preprocessing details. We include human dorsolateral prefrontal
cortex (DLPFC) datasets from 10X Visium platform [35], mouse
olfactory bulb dataset from Steroseq [5], and mouse olfactory bulb
dataset from SlideseqV2 [48]. We follow pre-processing steps as
suggested in the original paper (a summary can be seen in Table 2).
Detailed methodologies for preprocessing and obtaining PPI and
GRN are shown in the appendix.

Benchmark baselines and evaluation metrics. For the gene
imputation task, data is down-sampled with 10% of non-zero en-
tries allocated for testing and another 10% for validation [53]. To
ensure fairness, this procedure is repeated ten times, each with
different mask configurations. Imputed gene expressions are com-
pared to ground truth using L1 Distance, Root-Mean-Square Error
(RMSE), and Cosine Similarity. We evaluate ten leading methods,
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Figure 2: iMiracle fully delineates the CCC network via iter-
ative learning, uncovering up to 181% more LR interactions
in 10x Visium, 67% in Stereoseq, and 153% in SlideseqV2.

including scRNA-seq data analysis tools like scVI [34], ALRA [31],
eSNN [49], MAGIC [51], and scGNN [53], which overlook spatial
information. Additionally, gimVI [33] and Tangram [2], capable
of integrating reference scRNA-seq, are tested in a reference-free
mode for fairness. Spatial transcriptomics-specific methods like
seSNN [43], STLearn [37], and STAGATE [8] are included.

For ligand-gene regulatory score inference using simulated data,
we employed four evaluation metrics: Precision, Normalized Dis-
counted Cumulative Gain (NDCG), Spearman Correlation, and
Kendall Rank Correlation. Our comparison includes NicheNet [3],
SpaTalk [44], and HoloNet [29], assessing their ability to rank LR
pairs based on their influence on specific genes within cells, with a
random guess approach as a naive baseline. We use default settings
for all baseline methods.

4 Results
4.1 iMiracle delineates the full landscape of

CCC network via iterative learning
To test the efficacy of iterative learning, we evaluated its role in the
gradual delineation of the full landscape of CCC on eight datasets.
Specifically, we compared the number of views in the constructed
CCC, in other words, the number of included LR pairs. We found
that iMiracle’s iterative learning process noticeably increased the
LR pairs included in G𝐶 . For instance, on the 10x Visium datasets,
iMiracle identified an increase of 27 to 56 LR pairs across six sam-
ples in the final iteration compared to the first round (Fig. 2A).
This trend was consistent across all sequencing platforms, with an
addition of 16 LR pairs in Stereoseq (Fig. 2B) and 26 in SlideseqV2
(Fig. 2C). The increased LR pair information enriched the spatial
information in the GNN, potentially facilitating the downstream
expression imputation and regulatory score inference tasks.

4.2 iMiracle consistently boosts imputation
accuracy on diverse datasets

Next, we evaluated iMiracle’s imputation performance against ten
recent methods on diverse real datasets across three popular plat-
forms (10x Visium, Stereoseq, and SlideseqV2) and two species
(human and mouse). Due to the lack of gold standard benchmark
datasets, we down-sampled the observed data and used the masked
values as the ground truth to calculate three metrics, including L1
Distance, RMSE, and Cosine Similarity.
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Figure 3: iMiracle consistently outperforms other methods
in the regulatory score inference. (A) In this simulation,
1000 cells are spatially arranged in a 100-unit square. Cell
types were determined by their locations, incorporating high-
expression zones for various LR pairs, to realistically model
gene expression and CCC dynamics. This setup is utilized for
inferring cellular-level regulatory scores. (B) Benchmarking
results demonstrate iMiracle’s superior accuracy in inferring
ligand-gene regulatory scores, surpassing all four baselines
across all four metrics.

As shown in Table 3, iMiracle notably outperformed the best
spatially-informed methods and demonstrated even larger improve-
ments when compared to the top scRNA-seq-based baselines. On
the SlideseqV2 dataset, for example, iMiracle achieved a 47% RMSE
improvement over STAGATE, the foremost spatial method, and a
52% RMSE improvement over scGNN, the top non-spatial method.
Specifically, among all methods utilizing cell coordinates, GNN-
based approaches, such as STAGATE and iMiracle, demonstrated
superior performance, supported by an average RMSE improvement
of 66% over other spatial techniques. In addition, iMiracle exhibited
higher imputation accuracy than STAGATE (RMSE 0.407 vs 0.765),
attributable to its iterative learning and the multi-view network that
combines both gene expression and distance information, as op-
posed to STAGATE’s single-view GNN architecture derived mainly
from the spatial distance. We also tested other datasets and found
that iMiracle consistently reported the best gene imputation accu-
racy in all three metrics, indicating the robustness of our method
across diverse sequencing platforms.

4.3 iMiracle highlights accurate inter-cellular
ligand-gene regulatory insights

We benchmarked iMiracle with four other methods in terms of
their ability to accurately capture ligand-target gene regulatory
relationships across various simulated datasets (Fig. 3A, details
see methods). Using known ligand-gene score as ground truth, we
found that iMiracle consistently outperformed all the other methods
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Table 3: Gene imputation benchmark. The best results are bolded. Results marked ’NA’ for stLearn indicate unavailable HE
stained images required by the method. "w/o" and "w" mean methods without and with spatial information, respectively.

Metric Method
Platform & Dataset

10xVisium Stereoseq SlideseqV2
DLPFC Mouse Mouse

151507 151508 151509 151510 151669 151670 / /

L1
D
is
ta
nc
e w/o

scVI 0.794±0.004 0.838±0.006 0.800±0.002 0.670±0.003 0.810±0.003 0.696±0.005 1.442±0.005 1.127±0.006
ALRA 0.499±0.003 0.512±0.001 0.490±0.001 0.496±0.001 0.467±0.002 0.472±0.002 0.406±0.013 0.649±0.066
eSNN 1.254±0.001 1.373±0.001 1.266±0.001 1.294±0.000 1.017±0.001 1.071±0.001 2.802±0.002 2.071±0.002
Magic 0.779±0.001 0.825±0.001 0.787±0.000 0.664±0.001 0.795±0.001 0.692±0.000 1.324±0.001 1.080±0.000
scGNN 0.583±0.011 0.665±0.085 0.589±0.011 0.584±0.004 0.550±0.006 0.532±0.009 0.819±0.240 0.664±0.018

w

gimVI 0.838±0.003 0.890±0.003 0.835±0.001 0.737±0.002 0.863±0.003 0.765±0.001 1.325±0.001 1.153±0.002
seSNN 1.254±0.001 1.371±0.001 1.266±0.000 1.294±0.000 1.017±0.001 1.072±0.001 2.775±0.002 1.998±0.001
Tangram 1.691±0.001 1.811±0.001 1.689±0.000 1.420±0.000 1.728±0.001 1.474±0.000 2.899±0.001 2.185±0.000
STLearn 1.333±0.001 1.423±0.001 1.332±0.001 1.148±0.001 1.369±0.002 1.206±0.001. NA NA
STAGATE 0.297±0.001 0.300±0.002 0.295±0.005 0.294±0.004 0.274±0.005 0.278±0.002 0.289±0.006 0.502±0.007
iMiracle 0.271±0.001 0.280±0.001 0.271±0.002 0.272±0.001 0.263±0.001 0.265±0.002 0.203±0.003 0.284±0.004

Co
si
ne

Si
m
ila
rit
y

w/o
scVI 0.907±0.001 0.913±0.001 0.906±0.001 0.903±0.001 0.909±0.001 0.904±0.001 0.941±0.001 0.919±0.002
ALRA 0.948±0.002 0.952±0.002 0.952±0.001 0.952±0.001 0.938±0.006 0.944±0.003 0.980±0.002 0.927±0.018
eSNN 0.842±0.000 0.841±0.000 0.839±0.000 0.840±0.000 0.846±0.000 0.843±0.000 0.777±0.001 0.838±0.000
Magic 0.915±0.000 0.920±0.000 0.914±0.000 0.909±0.000 0.916±0.000 0.910±0.000 0.968±0.002 0.936±0.000
scGNN 0.933±0.004 0.927±0.016 0.932±0.002 0.936±0.000 0.917±0.002 0.929±0.002 0.948±0.035 0.953±0.002

w

gimVI 0.957±0.000 0.965±0.001 0.955±0.001 0.947±0.001 0.962±0.001 0.948±0.002 0.964±0.000 0.936±0.001
seSNN 0.843±0.000 0.841±0.000 0.840±0.000 0.841±0.000 0.851±0.000 0.847±0.000 0.768±0.000 0.817±0.000
Tangram 0.713±0.001 0.725±0.001 0.717±0.001 0.716±0.001 0.717±0.001 0.715±0.000 0.772±0.001 0.763±0.001
STLearn 0.718±0.000 0.718±0.000 0.715±0.001 0.724±0.000 0.715±0.001 0.717±0.000 NA NA
STAGATE 0.983±0.000 0.985±0.000 0.983±0.001 0.984±0.001 0.980±0.001 0.980±0.000 0.990±0.000 0.961±0.000
iMiracle 0.985±0.000 0.987±0.000 0.985±0.000 0.985±0.000 0.982±0.001 0.982±0.000 0.996±0.000 0.990±0.000

RM
SE

w/o
scVI 0.940±0.005 0.993±0.006 0.949±0.003 0.803±0.003 0.959±0.003 0.834±0.005 1.628±0.005 1.307±0.007
ALRA 0.784±0.003 0.810±0.005 0.766±0.001 0.777±0.001 0.735±0.004 0.743±0.003 0.723±0.036 1.061±0.107
eSNN 1.378±0.001 1.503±0.000 1.393±0.000 1.419±0.001 1.143±0.002 1.199±0.001 2.778±0.001 2.177±0.001
Magic 0.917±0.001 0.972±0.001 0.929±0.000 0.792±0.000 0.936±0.001 0.824±0.000 1.453±0.001 1.238±0.001
scGNN 0.755±0.016 0.850±0.096 0.762±0.011 0.755±0.002 0.717±0.007 0.686±0.010 1.051±0.307 0.842±0.021

w

gimVI 0.955±0.002 1.002±0.001 0.957±0.001 0.858±0.001 0.970±0.002 0.890±0.002 1.448±0.001 1.217±0.004
seSNN 1.354±0.001 1.474±0.000 1.370±0.000 1.395±0.001 1.119±0.001 1.175±0.001 2.770±0.002 2.087±0.001
Tangram 1.768±0.001 1.889±0.001 1.767±0.000 1.503±0.000 1.804±0.001 1.557±0.000 2.970±0.001 2.284±0.000
STLearn 1.516±0.001 1.629±0.001 1.521±0.001 1.300±0.001 1.556±0.002 1.362±0.001 NA NA
STAGATE 0.384±0.002 0.393±0.002 0.379±0.007 0.380±0.007 0.357±0.007 0.365±0.004 0.485±0.008 0.765±0.005
iMiracle 0.358±0.000 0.359±0.001 0.365±0.001 0.371±0.001 0.342±0.000 0.346±0.001 0.324±0.003 0.407±0.007

(Fig. 3B). For instance, iMiracle demonstrated a noticeable improve-
ment in NDCG (0.79 vs 0.24, Fig. 3B) when compared to NichNet,
a gain largely due to its effective integration of spatial information.
Among the spatial methods, iMiracle stood out as the best, surpass-
ing SpaTalk and HoloNet (NDCG 0.79 vs 0.56/0.48, Fig. 3B). This
trendwas not only evident in NDCG but also consistent across other
metrics such as precision, Spearman Correlations, and Kendall Rank
Correlations. Such consistent performance highlights the benefit of
using iterative learning to comprehensively map the CCC network,
as well as its integration of both inter- and intra-cellular networks.
This approach provides a more detailed, cell-specific view of cellu-
lar communication. Furthermore, iMiracle’s improved performance
was affirmed under various parameter settings (details in the ap-
pendix), underscoring the model’s adaptability and effectiveness in
diverse research contexts.

4.4 iMiracle reveals substantial regulatory
heterogeneity across cells of the same type

One unique advantage of iMiracle is its ability to split gene expres-
sion into separate components driven by cell-type and the micro-
environment, offering vital insights into how ligands differentially
influence target genes within a specific spatial context. Therefore,
our approach can quantitatively assess cell-specific spatial impacts
of inter-cellular regulation and reveal regulatory variations among

cells of the same type. We demonstrated this via a case study by esti-
mating each LR’s regulatory score toGJA1, a canonical marker gene
in Astrocytes with essential functions in gap junction formation
and DLPFC functionality [38, 47].

Specifically, we identified regions with high LR regulatory scores
and gene expression of GJA1 and intersected them with differ-
ent layers, resulting in three unique regions to begin with (Fig.
4A&E). The top three LR pairs with the highest average regulatory
scores were selected: PTN-SDC4, APP-SORL1, and LRRC4B-PTPRD.
It’s noteworthy that two out of three LR pairs (PTN-SDC4 and
LRRC4B-PTPRD) were identified via iterative learning, highlighting
the importance of relying on dense imputed data.

We first compared the observed expression patterns with the
two predicted components from iMiracle: cell-type-driven and
micro-environment-driven expressions (Fig. 4B-D). These patterns
showed high consistency in our visualizations. When we analyzed
the cell-specific regulatory scores, we noticed substantial hetero-
geneity and distinct patterns for different LR pairs. For instance,
the PTN-SDC4 pair exhibited consistent scores across all regions,
whereas the APP-SORL1 and LRRC4B-PTPRD pairs showed strong
preferences in specific regions (Fig. 4F-H). This finding underscores
the importance of including cell-specific contexts in modeling pro-
cesses, as relying solely on average cell-type-specific scores would
obscure such significant regulatory diversity.
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Figure 4: iMiracle reveals substantial regulatory heterogeneity across cells. (A) Detailed ground truth segmentation of the
cortical layers and white matter (WM) within the DLPFC section of sample 151507. (B) Visualization of the observed expression
pattern of GJA1. (C) Prediction of the baseline expression profile for GJA1. (D) Prediction of the LR-regulated expression for
GJA1. (E) Identification of three key regions within sample 151507. (F-H) Top three LR interactions and their corresponding
regulatory scores. LR pairs PTN-SDC4 and LRRC4B-PTPRD were discovered through an iterative learning approach, indicated
by their red colors. (I) Heatmap illustration of the percentage of cells featuring the top five LR pairs in each identified region.
(J-L) Jaccard similarity of the top five LR pairs for cells within each region, revealing substantial regulatory heterogeneity
across cells.

Finally, we compared both cross-region and within-region regu-
latory heterogeneity of the top 5 LR pairs. Only one LR pair PTN-
SDC4 was consistent across all three regions, while the remaining
ones were highly regional-specific (Fig. 4I). For instance, LRRC4B-
PTPRD pair ranked among the top 5 LR pairs in 99.6% of cells in
region 1, whereas it was present in only 4.2% and 45.1% of cells
in regions 2 and 3, respectively. Next, we looked at the regula-
tory heterogeneity within each region. Specifically, we calculated
the Jaccard similarity of the identified top 5 LR pairs among cells
within each region, as shown in Fig. 4J-L. Similarly, distinct LR
usage preferences were discovered among cells within all three
selected regions, demonstrating the pressing need to account for
each cell’s micro-environment when characterizing inter-cellular
transcription regulation.

4.5 Ablation study to evaluate the effectiveness
of iMiracle’s modeling components

To assess each component of our model, we performed a variant
analysis, considering four different versions: 1) "w/o GRN", which

excludes the integration of prior biological knowledge; 2) "w/o iter-
ations", a straightforward, non-iterative approach using sparse gene
expressions; 3) "shared GNN", where the same GNN parameters
are applied to all ligand-receptor (LR) pairs; and 4) "view decoder",
implementing a unique decoder for each LR pair. This analysis al-
lowed us to isolate and understand the individual contribution of
each component to the overall performance of the model.

Firstly, after removing prior knowledge of intra-cellular network,
we observed a slight decrease in gene imputation accuracy (1-11%,
Fig. 5A) and a more pronounced reduction in regulatory score
inference (NDCG: 0.43 vs 0.84, Fig. 5B). This outcome underscores
the critical role of integrating biological knowledge for generat-
ing biologically meaningful interpretations. Next, the non-iterative
model variant exhibited a slightly reduced accuracy in the regula-
tory score inference (NDCG: 0.78 vs 0.84, Fig. 5B), indicating the
advantages of adopting an iterative approach. Then we found that
employing shared GNN parameters led to a significant decline in
gene imputation performance (25-32%, Fig. 5A), highlighting the
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Figure 5: Variant analysis. (A) RMSE w.r.t. different variants
of iMiracle for gene imputation. (B) Four regulatory score
inference metrics w.r.t. variants of iMiracle. (C) Four regula-
tory score inference metrics w.r.t. GNN architectures.

necessity for diverse message propagation strategies across differ-
ent views in G𝐶 . Lastly, using view-specific decoders adversely
affected regulatory performance (NDCG: 0.66 vs 0.84, Fig. 5B), pre-
sumably due to the increased complexity in training arising from a
higher number of parameters.

We also tested iMiracle’s adaptability to different GNN archi-
tectures using GCN [26], GAT [52], GraphSAGE [20], and Graph-
Transformer [45]. Results showed comparable performance across
these architectures (Fig. 5C), demonstrating iMiracle’s flexibility
and efficacy with various GNN models. We use GraphTransformer
as our default setting.

4.6 Parameter analysis
To showcase the robustness of iMiracle in response to varying
parameters, we employed the simulated data to assess its precision
over a broad spectrum of blending coefficients 𝛼 , hidden dimensions
𝑑 , the number of neighbors 𝑘 for graph construction, and the GNN
layers 𝐿 [12–14, 54, 55, 58]. As depicted in Fig. 6A, an𝛼 value of zero
indicates exclusive reliance on newly imputed gene expressions for
determining the existing graph structure. Conversely, an 𝛼 value of
one signifies maintaining the original graph structure of existing
views. Both extremes lead to a reduction in precision. An 𝛼 value
of 0.2 results in optimal performance, underscoring the importance
of smoothly integrating updated gene expression profiles into the
multi-view graph. Exploring a wide range of hidden dimensions 𝑑 ,
from 2 to 2048, we observed that iMiracle demonstrates considerable
robustness in regulatory score inference, except at extreme values
(i.e., 2, 1024, or 2048) from Fig. 6B. We choose 32 as the default 𝑑 .
Also, we set the number of neighbors 𝑘 = 5 for graph construction,
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Figure 6: Parameter analysis. (A) Precision w.r.t. different
blending coefficient 𝛼 . (B) Precision w.r.t. different hidden di-
mension 𝑑 . (B) Precision w.r.t. different number of neighbors
𝑘 for graph construction. (B) Precision w.r.t. GNN layers 𝐿.

and the GNN layers 𝐿 = 2 for optimal balance between performance
and complexity as shown in Fig. 6C-D.

5 Conclusion and Discussion
In our study, we introduce iMiracle, a novel computational tool
tailored for spatial transcriptomic data, aiming to unravel the com-
plexities of inter-cellular transcriptional regulation. Unlike conven-
tional methods that offer only averaged ligand regulatory scores
across diverse micro-environments, iMiracle uniquely identifies the
effects of gene expression caused by neighboring cells using CCC,
separating these from effects due to the inherent characteristics
of the cell type itself. This distinction enables iMiracle to investi-
gate regulatory dynamics with unparalleled precision for a deeper
understanding of inter-cellular transcriptional regulation.

iMiracle distinguishes itself from existing approaches via three
key features designed explicitly for spatial transcriptomic data.
Firstly, it integrates spatial distance and LR expression profiles to
construct a multi-view inter-cellular CCC network, offering more
biologically relevant insights with greater depth of information
than methods mainly based on spatial distance (e.g., STAGATE).
This integration, especially when combined with prior knowledge
of intra-cellular networks (such as GRNs and PPIs), allows for more
accurate and interpretable gene expression imputation, a benefit
confirmed through extensive benchmarking on various datasets
(Table 3). Secondly, iMiracle utilizes iterative learning to progres-
sively refine the CCC network, effectively addressing data sparsity
and uncovering more impactful LR pairs, as shown in our analy-
ses on several real datasets (Fig. 2). Finally, it excels in inferring
cell-specific ligand-gene regulatory scores, a feature often over-
looked in approaches that neglect micro-environment effects (Fig.
3). We demonstrated the evident benefit of this feature by reporting
substantial regulatory heterogeneity in cells under different spatial
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contexts (Fig. 4). Aminor concern regarding iMiracle is that it neces-
sitates a cell-by-cell-type (or spot-by-cell-type-proportion) matrix
as input to estimate baseline cell-type-specific gene expression. As
a result, inaccuracies in cell type assignment or cell proportion
calculation could affect the imputation performance. However, the
impact of such inaccuracies is likely to be mitigated by ongoing and
future advancements in spatial resolution and sequencing depth in
technologies.

iMiracle has been developed as an open-source software freely
available for researchers exploring inter-cellular gene expression
regulation at the individual cellular level. Given the rapid advance-
ments in spatial transcriptomics and the increasing availability of
public data, iMiracle may serve as an essential tool in unraveling
the complexities of cell-to-cell communication networks in complex
tissues, thereby enriching our understanding of inter-cellular tran-
scriptional regulation dynamics across various biological contexts.
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A Data Preprocessing Details
For real-world data preprocessing, we first filtered the cells and
genes for quality assurance. Only cells with at least 500 detected
genes and genes expressed in at least 10% of cells were retained.
Next, we normalized the total counts per cell to a target sum of 1e4
and applied a log transformation to the data.

The protein-protein interaction (PPI) was obtained from a previ-
ous study named InWeb published in 2016 [30]. Specifically, we used
the InWeb_InBioMap PPI table for Homo Sapiens which contained
a total of 18,814 genes (vertices) and 883,356 interactions (edges).
For the cell type-specific GRN in the brain prefrontal cortex region,
we used a data processing pipeline from a set of private single-cell
multiome data that contain scRNA-seq and scATAC-seq modalities.
We first conducted a cellranger-arc call and basic QC to create the
curated scRNA-seq matrix and the scATAC-seq fragment. Then, we
used ArchR (v1.0.1) [19] to do cell type-specific peak calling and
peak-to-gene interaction with functions addReproduciblePeakSet()
and addPeak2GeneLinks(). In the peak calling step, we used Macs2
(version 2.2.7.1) [61] and did not limit the maximum number of
peaks per cell type. In the peak-to-gene linkage creation step, we
used the LSI created with 30 dimensions and used a correlation
cutoff of 0.45 and a resolution of 500,000bp upstream and down-
stream. Then, we retrieve the motif-to-peak correspondence (motif
annotation) from JASPAR2020 [18]. Using the annotation and the
created peak-to-gene linkage, we construct the motif-to-gene graph
if any peak connects to a gene and a motif.

To establish the mask from ligand to target gene, we processed
genes associated with specific cell types and LR pairs. For each LR
pair, genes were identified and expanded using PPI data to include
associated genes. Subsequently, we integrated this information with
GRN data to identify regulatory genes corresponding to each LR pair
for different cell types. This process resulted in a comprehensive
mapping, effectively linking LR pairs to their regulatory target
genes, and thereby capturing the complex interplay within cellular
communication networks.
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Figure 7: Additional regulatory score inference results.

B Complexity Analysis
We explored the complexity of iMiracle from two aspects: its time
complexity, determined by various computational steps, and its
parameter count, influenced by the distinct components.

B.1 Time Complexity Analysis of iMiracle
The time complexity of iMiracle is composed of four key steps:
the basic gene expression decoupling, the multi-view graph con-
struction, 𝑙𝑟 -specific GNNs, and the shared decoder. The basic MLP,
processing cell type and gene expression data, incurs a complexity
of 𝑂 (𝑛 × (𝑡 × 𝑑 + 𝑑 × 𝑚)). For the multi-view graph construc-
tion, each adjacency matrix A𝑙𝑟 computation entails a complexity
of 𝑂 (𝑛2). With 𝑝 unique LR pairs, the total complexity for this
component is 𝑂 (𝑝 × 𝑛2). The computational load for each GNN
layer is 𝑂 ( |𝐸 | × 𝑑), where |𝐸 | denotes the number of edges in the
sparse adjacency matrix. For all 𝑝 LR pairs, this accumulates to
𝑂 (𝑝 × |𝐸 | × 𝑑). The decoders, applied to the embeddings from
each 𝑙𝑟 -specific GNN, involve matrix operations resulting in a com-
plexity of 𝑂 (𝑝 × 𝑛 × (𝑑 × 𝑑 + 𝑑 ×𝑚)). Considering 𝑡 ≪ 𝑚 and
𝑑 ≪𝑚, the overall time complexity of iMiracle can be summarized
as 𝑂 (𝑝 × 𝑛2 + 𝑝 × 𝑑 × (|𝐸 | + 𝑛 ×𝑚)).

B.2 The Number of Parameters in iMiracle
iMiracle’s parameter complexity is influenced by its basic MLP, 𝑙𝑟 -
specific GNNs, and decoders. The basic MLP comprises parameters
of𝑂 (𝑡 × 𝑑 + 𝑑 ×𝑚). For each 𝑙𝑟 -specific GNN, the parameter count
is 𝑂 (𝑡 × 𝑑 + 𝑑 × 𝑑). With 𝑝 unique LR pairs, the total parameters
across all GNNs amount to 𝑝 ×𝑂 (𝑡 ×𝑑 +𝑑 ×𝑑). Similarly, the shared
decoder contributes an additional 𝑂 (𝑑 × 𝑑 + 𝑑 ×𝑚) parameters.
Given that 𝑡 ≪ 𝑚 and 𝑑 ≪ 𝑚, the overall parameter count of
iMiracle is 𝑂 (𝑑 × (𝑝 × (𝑡 + 𝑑) +𝑚)).

C Additional Performance Analysis
We benchmarked iMiracle with four other methods in terms of
their ability to accurately capture ligand-target gene regulatory
relationships under other eight simulation settings. As shown in
Fig. 7, iMiracle consistently achieves the best performance across
different settings and evaluation metrics.
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