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Evaluating performance and applications of 
sample-wise cell deconvolution methods on human 
brain transcriptomic data
Rujia Dai1, Tianyao Chu2, Ming Zhang2, Xuan Wang2, Alexandre Jourdon3, Feinan Wu3,  
Jessica Mariani3, Flora M. Vaccarino3,4, Donghoon Lee5, John F. Fullard5, Gabriel E. Hoffman5, 
Panos Roussos5, Yue Wang6, Xusheng Wang7, Dalila Pinto8, Sidney H. Wang9, Chunling Zhang10, 
PsychENCODE consortium†, Chao Chen2*, Chunyu Liu1,2,10*

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet 
their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. 
Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing 
(RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 
149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtan-
gle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain 
cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed 
that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. 
Differential gene expressions associated with Alzheimer’s disease, schizophrenia, and brain development were also 
examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, pro-
vided insights into the biological applications of deconvoluted data in multiple brain disorders.

INTRODUCTION
Brain tissue transcriptome is essential for studying brain biology and 
related disorders, but important cell-type information can be obscured. 
Several large-scale projects have generated valuable transcriptomic 
resources from human brains, such as GTEx (1), PsychENCODE (2), 
CommonMind (CMC) (3), Brainspan (4), and ROSMAP (5). However, 
most of the existing transcriptomes are from bulk tissues, which are 
mixtures of many different cell types. Given that gene expressions and 
regulatory mechanisms are known to vary across brain cell types, 
using bulk tissue data to study gene expression changes will obscure 
the underlying cellular context.

Sorted-cell RNA sequencing (RNA-seq) and single-cell/nuclei 
(sc/sn) RNA-seq (6, 7) offer solutions for profiling brain transcrip-
tome at the cell-type resolution but with several limitations. Cell 
sorting relies on marker genes of cell types, which are not always 

available. The specificity of these marker genes is frequently a con-
cern. Moreover, a combination of several marker genes only can sort 
limited cell types. Regarding sc/snRNA-seq, considerable gene ex-
pressions cannot be detected due to the limited RNA input from 
each cell (8). It is also challenging to discriminate between two pos-
sible causes of missing data: biologically true zero expression and 
technically missing data (9). These missing data may result in poten-
tial problems in gene expression quantification and the quality of 
downstream analysis. Another limitation is the high cost of sc/
snRNA-seq. Although multiplexing methods have been developed 
to simultaneously profile cells from numerous samples (10), using 
sc/snRNA-seq in studies requiring hundreds of subjects, such as dis-
ease association and expression quantitative trait loci (eQTL) map-
ping (11), can be cost-prohibitive.

Computational algorithms for cell deconvolution have been de-
veloped to estimate cell proportions. These algorithms can be classi-
fied into two types: Supervised deconvolution uses prior information 
from cell-type reference data to facilitate the estimation of the cell 
proportions in bulk tissue samples, while unsupervised deconvolu-
tion does not need a reference. This study focused on evaluating 
supervised deconvolution methods.

The performance of methods for estimating cell proportions has 
been previously evaluated (12–16) with data from the brain and other 
tissues. Methods such as Digital Sorting Algorithm (DSA) (17), ordi-
nary least squares regression (OLS), CIBERSORT (18), dtangle (19), 
and MuSiC (20) showed good performance in these evaluations. In 
addition, the effects of cell-type marker gene selection, covariates, 
data transformation and normalization, and cell subtypes on cell de-
convolution have been evaluated, which provided guidelines for data 
processing before cell deconvolution.

Cell-type gene expressions can also be deconvoluted from bulk 
tissue expression data. Sample-wise deconvolution methods have been 
developed to estimate cell-type gene expressions for each sample, 
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such as bMIND (21), swCAM (22), and Tensor Composition Analysis 
(TCA) (23). All these methods are supervised and use expression 
references from sc/snRNA-seq or sorted-cell expressions. The cell-
type expressions of the individual samples enable eQTL mapping 
and differential expression analysis in a cell type–specific way. The 
deconvoluted data can cover most of the genes detected in bulk tissue, 
which is less sparse than sc/snRNA-seq data. Cell deconvolution 
makes the large-scale study of cell-type expressions affordable since 
bulk tissue data are either ready to use or can be generated at a rela-
tively low cost.

The methods for estimating sample-wise cell-type expressions 
have been partially evaluated, although there are major blind spots. 
The performance of bMIND, TCA, and swCAM has been evaluated 
in their original methodology papers; however, these studies used 
artificially constructed pseudo-bulk data rather than bulk tissue 
data to benchmark the different methods’ performance. Pseudo-
bulks were constructed by simulating cell proportions and multi-
plying simulated proportions with expressions from sc/snRNA-seq 
or sorted-cell expression data; therefore, pseudo-bulk data are less 
complex than the data from real bulk tissue (24). The cell-type dif-
ferences in the pseudo-bulk are easier to be captured than those in 
bulk tissue data. Thus, the benchmarking conclusion based on the 
pseudo-bulk data may not be applicable to data from brain tissues. 
On the other hand, head-to-head comparisons of all these methods 
on brain tissue data have not been conducted to date. The down-
stream applications based on deconvoluted data, such as eQTL map-
ping and differential expression, have also not been evaluated to 
showcase the validity of deconvolution.

The current study aimed at evaluating the performance of algo-
rithms for sample-wise deconvoluting cell proportions and cell-type 
expressions, as well as research applications based on the deconvo-
luted data. Specifically, we evaluated six commonly used deconvolu-
tion methods for estimating cell proportions and three deconvolution 
methods for estimating the cell-type expressions of individual sam-
ples. Data from bulk tissue RNA-seq, sc/snRNA-seq, and immuno-
histochemistry (IHC) of matched adult postmortem brains and 
brain organoids were used for evaluation. Downstream analyses of 
the deconvoluted results were also conducted, including their use in 
eQTL mapping, schizophrenia (SCZ) genome-wide association study 
(GWAS) heritability enrichment, the differential expression for Al-
zheimer’s disease (AD), SCZ, and brain development in cell types. 
On the basis of the evaluation, we recommended the best practice for 
cell deconvolution of brain transcriptome.

RESULTS
Benchmarking of sample-wise deconvolution methods with 
brain transcriptome data
To evaluate commonly used deconvolution methods, we selected six 
methods [DSA, OLS, CIBERSORT, dtangle, MuSiC, and Bisque; 
(25)] for estimating cell proportions and three methods (bMIND, 
swCAM, and TCA) for estimating cell-type expressions (Fig. 1). Bulk 
tissue RNA-seq, snRNA-seq, and IHC data from ROSMAP were used 
as primary data for evaluation (26). Data from adult brains in CMC 
(27) and brain organoids (28) were used for confirmation (Table 1). 
Cell proportions from IHC and sc/snRNA-seq data were used as 
ground truth for evaluating the accuracy of estimated cell propor-
tions. Gene expressions in sc/snRNA-seq data were used as ground 
truth for evaluating the accuracy of estimated cell-type expressions. 

The root mean square error (RMSE) and Spearman’s correlation co-
efficient were used as evaluation metrics. After method evaluation, 
eQTL mapping, GWAS heritability enrichment, and differential ex-
pression analysis were performed on the cell-type expressions esti-
mated by the best-performing method. To further evaluate the 
quality of deconvolution outputs by actual applications, the cell-type 
eQTLs, explained GWAS heritability, and phenotype-associated 
genes (PAGs) derived from deconvoluted expressions were com-
pared to corresponding results based on sc/snRNA-seq and bulk 
tissue data.

Evaluation of cell proportions estimated by 
deconvolution methods
The overall performance of six deconvolution methods (DSA, OLS, 
CIBERSORT, dtangle, MuSiC, and Bisque) for estimating cell pro-
portions was evaluated with ground truth from matched samples. 
To ensure the deconvolution performance, the intersection of mark-
er genes identified at the single-cell level and the pseudo-bulk level 
was used to guide deconvolution (see details in Materials and Meth-
ods). When using ROSMAP IHC data as the reference (with a sam-
ple size of 49), both dtangle and OLS demonstrated lower RMSE 
values compared to the other methods, as depicted in Fig. 2A. In the 
case of ROSMAP, CMC (with a sample size of 94), and organoid 
data (with a sample size of 55) using cell proportions computed 
from sc/snRNA-seq data as the ground truth, Bisque exhibited su-
perior performance compared to the other methods, followed by 
dtangle. MuSiC did not perform well in these three datasets despite 
being specifically designed to utilize sc/snRNA-seq data as a refer-
ence. When averaging the RMSE values across all datasets, both 
dtangle and Bisque achieved an RMSE of 0.11, establishing them as 
the two best-performing methods. The accuracy of deconvoluted 
cell proportions in major cell types was better than the accuracy in 
rare cell types (Fig.  2B and fig.  S1). The RMSE increased sharply 
when the cell proportion was below 5%, such as in oligodendrocyte 
precursor cells (Opcs), microglia, endothelial cells, and pericytes in 
adult brains. Similar results were observed using Spearman’s corre-
lation as an evaluation metric (fig. S2).

Evaluation of cell-type expressions estimated by 
sample-wise deconvolution methods
The accuracy of sample-wise cell-type expressions deconvoluted by 
bMIND, swCAM, and TCA was evaluated using ground truth gen-
erated from sc/snRNA-seq expressions of matched samples (n = 35 
for ROSMAP, n = 94 for CMC, and n = 55 for brain organoids). Cell 
proportions estimated by Bisque and dtangle were selected as input 
for the three methods because they showed the best performance in 
the above evaluation for estimating cell proportions. bMIND dis-
played the best performance for estimating cell-type expressions in 
all datasets, followed by swCAM (Fig. 3A). For bMIND, the aver-
aged correlation coefficient between estimated expressions and sc/
snRNA-seq data was 0.62 in ROSMAP data, 0.75 in CMC data, and 
0.85 in brain organoid data. We did not observe a substantial differ-
ence in performance for estimating expressions of major and rare 
cell types (Fig. 3B). However, bMIND performed more steadily and 
better overall in major cell types than in rare cell types. The expres-
sion profiles of the deconvoluted cell types exhibited a greater resem-
blance to their corresponding cell types in sc/snRNA-seq data (e.g., 
deconvoluted neurons to neurons detected in sc/snRNA-seq data), 
while they showed less similarity to other cell types [e.g., deconvoluted 
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neurons to glial types in sc/snRNA-seq data (fig. S3)]. A number of 
well-known marker genes were highly expressed in corresponding 
cell types, thus indicating that the deconvoluted data have good cell-
type specificity (Fig. 3C).

Cell-type eQTL mapping with deconvoluted sample-wise 
expression data
To identify single-nucleotide polymorphisms (SNPs) that cis-regulate 
gene expression in specific cell types, cell-type eQTL mapping was 
performed for the association between genotypes and deconvoluted 
gene expressions of individual samples. The cell-type eQTLs identi-
fied with deconvoluted gene expressions were named deconvolution 

eQTLs (decon-eQTLs). RNA-seq data of 1112 bulk tissue samples in 
ROSMAP collection were deconvoluted. Of the 1112 samples, 861 
samples had genotype data and were used for decon-eQTL mapping. 
Cell proportions and cell-type expressions were estimated with dtangle 
and bMIND, respectively. The effect of SNPs within a 1-megabase 
window around the transcription start site (TSS) of genes was tested. 
The number of input genes for decon-eQTL mapping ranged from 
8521 to 12,418, across eight cell types. The number of input SNPs 
was 4,954,561 for all cell types. Effects of known and hidden covari-
ates on deconvoluted gene expressions were corrected. A total of 
3,185,333 unique decon-eQTLs were detected across eight cell types 
at a genome-wide significant level [false discovery rate (FDR) < 0.05]. 

Fig. 1. Study overview. This figure was created with BioRender software.

Table 1. Datasets used for evaluation. PFC, prefrontal cortex.

Study Brain region Data type Sample size Number of cells Number of cell types Number of genes

ROSMAP PFC Bulk tissue RNA-seq 1112 – – 17,128

PFC snRNA-seq 48 69,611 8 17,926

PFC IHC 49 – 5 –

CMC PFC Bulk tissue RNA-seq 572 – – 25,774

PFC snRNA-seq 101 569,289 7 33,822

Brain organoid – Bulk tissue RNA-seq 130 – – 20,125

– scRNA-seq 72 490,844 33,538
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The number of decon-eQTLs detected in each cell type ranged be-
tween 1,088,634 and 2,245,945. To identify the strongest eQTL in 
SNPs, a permutation test was performed for each gene. A total of 
25,273 (4541 to 8149) independent decon-eQTLs were identified at 
FDR < 0.05 for eight cell types (Fig. 4B). As expected, eQTL SNPs 
(eSNPs) were enriched around the TSS region of eQTL genes 
(eGenes) (fig. S4). The numbers of detected decon-eQTLs were pos-
itively correlated with the proportions of cell types in the tissue 

(Fig. 4B). To test the robustness of identified decon-eQTLs, sample 
IDs were randomly shuffled before the eQTL mapping. The absence 
of significant eQTL in the shuffled data supported the notion that 
the identified decon-eQTLs were not due to random noise (fig. S5).

Identified decon-eQTLs from ROSMAP data were replicated 
with deconvoluted data from BrainGVEX (29). The same deconvo-
lution and eQTL mapping procedures were performed on RNA-seq 
data of 400 postmortem brain samples from BrainGVEX to obtain 
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Fig. 2. Assessment of cell proportions estimated by examined deconvolution methods. (A) Sample-level RMSE values between estimated cell proportions and 
ground truth. IHC, immunohistochemistry; scprop, cell proportions calculated from sc/snRNA-seq data; scprop, the number of cells of specific cell type/number of total 
cells. (B) Cell-type level RMSE values between estimated cell proportions and ground truth data. RMSE values were normalized by the value of cell proportions to make 
them comparable across cell types. Cell types were ordered by cell proportions in a decreasing way. Ex, excitatory neurons; In, inhibitory neurons; Ast, astrocytes; Opc, 
oligodendrocyte precursor cells; Mic, microglia; Per, pericytes; End, endothelial cells; RG, radial glia; EN.PP, early born excitatory neurons of the preplate/subplate; CP.mixed, 
cortical plate mixed neurons; MCP, medial cortical plate; EN-DCP, dorsal cortical plate excitatory neurons; IPC-nN, intermediate progenitor cell or newborn neuron; RG.tRG, 
truncated radial glia; RG.oRG, outer radial glia; RG.hem, radial glia in cortical hem; IN, inhibitory neurons; RG-LGE, progenitors corresponding to a putative ventrolateral 
ganglionic eminence fate.
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A

B

C

Fig. 3. Assessment of sample-wise cell-type expressions deconvoluted from bulk tissue data. (A) Overall assessment of methods for estimating cell-type expres-
sions. Spearman’s correlations between deconvoluted data and sc/snRNA-seq data from matched samples. The averaged expression by cell types was used as ground 
truth. (B) Cell-type level assessment of methods for estimating cell-type expressions. Correlations between deconvoluted data by bMIND and sc/snRNA-seq data were 
calculated for each cell type. Cell proportions estimated by dtangle were used for input. Cell types on the y axis were ordered by cell proportions computed from sc/
snRNA-seq. (C) Assessment of cell-type specificity in estimated expressions. The figure shows the expression of marker genes in deconvoluted data by bMIND.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia Irvine on June 08, 2024



Dai et al., Sci. Adv. 10, eadh2588 (2024)     23 May 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 13

the decon-eQTLs. Across eight cell types, 3479 to 5718 independent 
eQTLs were identified in the deconvoluted data from BrainGVEX at 
FDR <  0.05. To measure the replication rate of ROSMAP decon-
eQTLs in BrainGVEX data, the Pi1 statistic (30), which is the propor-
tion of true eQTL associations in the replication data, was calculated. 
The Pi1 of ROSMAP decon-eQTLs in BrainGVEX data was 0.59 to 
0.74 for the matched cell types (Fig. 4C). Decon-eQTLs of oligoden-
drocyte had relatively better replication than other cell types.

Cell-type eQTLs from snRNA-seq data in Bryois et al. (31) were 
also used to replicate our decon-eQTLs. This replication study per-
formed genotyping and snRNA-seq on 192 cortical samples. A total 
of 7607 independent eQTLs across eight cell types were identified. 
Although the replication data had less statistical power than our 
deconvoluted data, 17 to 57% of decon-eQTLs were replicated 
(Fig. 4D). Excitatory neurons (Pi1 = 0.57) had higher Pi1 values than 
other cell types (averaged Pi1 = 0.38).

To illustrate the value of decon-eQTLs, we compared decon-
eQTLs to bulk tissue eQTLs from ROSMAP (Fig. 4E). Overall, decon-
eQTLs had good replication in bulk tissue data, with Pi1 > 0.95. The 
eQTLs that were significant at the cell-type level but insignificant at the 
bulk tissue level were defined as cell type–specific eQTLs. A total of 
1206 to 3006 (24.3 to 36.89%) cell type–specific eQTLs were identified 
in the deconvoluted data. Cell type–specific eQTLs had Pi1 values of 
0.17 to 0.52 in single-cell eQTLs, which were similar to the Pi1 values of 
decon-eQTLs that were shared with bulk tissue eQTLs (fig. S6). This 
demonstrated that a good proportion of eQTLs regulate gene ex-
pressions in a cell type–specific way, and they can be detected by 
decon-eQTLs.

Cell-type eQTLs enriched for the risk heritability in 
SCZ GWAS data
To test whether cell-type eQTLs are enriched for genetic risk herita-
bility of SCZ, stratified linkage disequilibrium score regression 
(sLDSC) (32) was used to calculate the heritability of SCZ GWAS 

mediated by decon-eQTLs. Single-cell eQTLs and bulk tissue eQTLs 
were also included for comparison. Decon-eQTLs explained more 
SCZ GWAS heritability (averaged h2 = 37%) than single-cell eQTLs 
(averaged h2 = 6%) for all cell types (Fig. 5A). Bulk tissue eQTLs ex-
plained 49% of SCZ GWAS heritability. Integrating decon-eQTLs and 
bulk tissue eQTLs increased the explained heritability to 63%, whereas 
the integration of single-cell eQTLs only resulted in an increase of 
heritability to 53%. The total proportion of explained heritability was 
correlated with the proportions of cell type in the tissue. To control 
the effect of SNP numbers, heritability was normalized by the number 
of decon-eQTLs, which was called GWAS heritability enrichment. 
Decon-eQTLs of all cell types were enriched for SCZ GWAS herita-
bility (P value < 0.05; Fig. 5B). Decon-eQTLs of oligodendrocytes 
showed the strongest per-SNP enrichment across all cell types. The 
SCZ GWAS heritability was only significantly enriched in single-cell 
eQTLs from oligodendrocytes and excitatory neurons. Decon-eQTLs 
of most of the cell types showed higher enrichment of SCZ GWAS 
heritability than bulk tissue eQTLs (Fig. 5B), indicating that some of 
the SCZ risk SNPs may affect gene expression in cell type–specific 
way. Deconvolution analyses uncovered more of these cell type–
specific regulations associated with the genetic risk of SCZ than 
single-cell or bulk tissue eQTL.

Identification of gene expression changes associated with 
brain diseases and brain development within cell types
To identify genes associated with various phenotypes in specific cell 
types, differential gene expression analysis was conducted using the 
deconvoluted gene expressions. Associations with AD, SCZ, and 
brain development modeled by organoids were tested in three decon-
voluted datasets independently. More samples were included in AD 
(nAD = 743, ncontrol = 367) and SCZ (nSCZ = 246, ncontrol = 279) 
data. For AD and SCZ, the Wilcoxon signed-rank test was per-
formed on the deconvoluted data. For brain development, the linear 
regression model was used to test the correlation between 
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Fig. 4. Cell-type eQTL mapping based on deconvoluted sample-wise expression data. (A) Illustration of decon-eQTL mapping. (B) Number of decon-eQTLs identified 
in different cell types at FDR < 0.05 in the permutation test. (C) Pi1 statistics of decon-eQTLs in BrainGVEX decon-eQTLs and (D) eQTLs from snRNA-seq study of Bryois et al. 
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deconvoluted data and culture days of organoids (nday0  =  15, 
nday30 = 22, and nday60 = 18). With a threshold of FDR < 0.05, 4419, 
10,964, and 9562 PAGs were identified for AD, SCZ, and brain 
development, respectively.

To test the reliability of PAGs identified from deconvoluted data, 
we conducted a comparison between the PAGs across all deconvo-
luted cell types (the union set, gene set A) and the PAGs identified in 
bulk tissue data (gene set B). To determine the replication rate, we 
calculated the proportion of the overlaps between gene set A and B 
in gene set A (Fig. 6). In total, 81, 49, and 89% of PAGs for AD, SCZ, 
and brain development, respectively, were replicated in bulk tissue 
data. Among these PAGs, most of them (>95%) had the same direction 
of expression changes in bulk tissue data. For AD and SCZ, less than 
15% of PAGs overlapped with PAGs from snRNA-seq data. However, 
35% of development-related PAGs could be replicated in scRNA-seq 
data. The possible explanation for the difference in replication rate 

in the three datasets is that the expression changes associated with 
brain development were larger than the changes associated with AD 
or SCZ (fig. S7). The low replication rate with sc/snRNA-seq data 
suggested that sc/snRNA-seq data were underpowered to detect PAGs 
of small effect size.

DISCUSSION
Using bulk tissue RNA-seq, IHC, and sc/snRNA-seq data from matched 
samples, the performance of six methods for estimating cell propor-
tions and three methods for estimating sample-wise cell-type gene 
expressions was systematically evaluated. The transcriptome data 
used for evaluation were from adult brains and cultured brain or-
ganoids, providing data representative of different states of cell ma-
turity and developmental processes. In addition, the results of eQTL 
mapping, SCZ GWAS heritability enrichment, and differential 
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expression analysis based on deconvoluted data demonstrate the 
utility of deconvolution.

dtangle had better accuracy for estimating cell type proportions 
than other methods. Previous studies have benchmarked the perfor-
mance of deconvolution methods for estimating cell proportions 
with ground truth data created from simulated cell proportions. In 
those studies, dtangle showed good performance in (15) but poor 
performance in (12). One possible reason is the difference in pseudo-
bulk simulation between studies. Sutton et  al. (15) constructed 
pseudo-bulks from 500 cells, while Avila Cobos et al. (12) used only 
100 cells for each pseudo-bulk. Given that sc/snRNA-seq data are re-
markably sparse, 100 cells may not be representative of cell composi-
tion in bulk tissue. This inconsistency suggests the necessity of using 
real ground truth data in benchmarking studies. By using bulk tissue 
RNA-seq and IHC data from matched samples, dtangle was found to 
be the best deconvolution method for estimating cell proportions in 
this study. The excellent performance of dtangle was preserved in the 
data using cell proportions from IHC and sc/snRNA-seq data as 
ground truth.

Deconvolution methods using sc/snRNA-seq data as reference, 
such as Bisque and MuSiC, did not outperform old methods when 
using cell proportions from IHC data as ground truth. Given that 
Bisque learns prior information from the reference of sc/snRNA-seq 
data, it is expected to see that Bisque showed perfect performance 
when using cell proportions from sc/snRNA-seq data as ground 
truth. However, the cell proportions measured by single-cell tech-
nologies can be easily biased by the sorting strategy (33, 34). The 

proportions from single-cell data as prior reference and ground 
truth should be used with caution.

Head-to-head evaluation of sample-wise deconvolution methods 
for estimating cell-type expressions was conducted here. bMIND 
was the best method for estimating cell-type expressions in our 
evaluation because the correlation coefficients between estimated 
expressions by bMIND and ground truth were higher than in other 
methods. Moreover, our evaluation showed that the deconvoluted 
data by bMIND have good cell-type specificity. The deconvoluted 
expressions by bMIND had a high correlation with matched cell types 
but a low correlation with other cell types in the ground truth data 
(fig. S3). The deconvoluted cell types by bMIND also expressed well-
known marker genes. For example, NRGN and GAD1 were highly 
expressed in excitatory and inhibitory neurons, respectively, but they 
were poorly expressed in glial cell types. These results indicated that 
bMIND is the best method for generating cell type–specific gene ex-
pressions for each sample directly from bulk tissue data.

The deconvolution performance on rare cell types is in general 
poor and is thus a challenge for cell deconvolution. The accuracy of 
deconvoluted cell proportions decreased sharply when cell propor-
tion was less than 5%. Similarly, the accuracy of estimated gene ex-
pressions was low for rare cell types in brains, such as endothelial 
cells (correlation coefficient between deconvoluted expressions and 
ground truth = 0.33) and pericytes (correlation coefficient = 0.43). 
Given the fact that the rare cell types may be masked by major cell 
types in traditional sc/snRNA-seq due to low abundance, rare cell 
types may need to be studied using RNA-seq of sorted cells, high 
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coverage sc/snRNA-seq, or with techniques that enrich for rare 
cell types.

The most important benefit of cell deconvolution was that more 
cell-type eQTLs were identified using deconvoluted data than using 
single-cell data and bulk tissue data. Cell-type eQTLs have been 
generated with sc/snRNA-seq data (35, 36); however, the number of 
individuals profiled was typically limited (11). To date, a total of 
7607 eQTLs have been identified in the largest single-cell eQTL 
study (31) of 192 human brain samples. Besides the small sample 
size, the quality of single-cell data can be potentially affected by poor 
expression quantification, with serious missing data issues and high 
technical variability (9). Consequently, the eQTLs identified from 
sc/snRNA-seq data may be affected. In contrast, this study deconvo-
luted data from 861 human brains and mapped 25,273 decon-
eQTLs, far more than eQTLs identified from single-cell studies. The 
union for decon-eQTLs of all cell types was even more than bulk 
tissue eQTLs (9148). A total of 24.3 to 36.89% of top decon-eQTLs 
were not detected by bulk eQTL mapping, indicating that many cell 
type–specific eQTLs are buried in bulk tissue data since the expres-
sion of diverse cell types is mixed. Overall, decon-eQTLs could be 
replicated in bulk tissue eQTLs (averaged Pi1 = 0.99) and single-cell 
eQTLs (averaged Pi1  =  0.38), indicating the reliability of eQTLs 
identified in deconvoluted data. Sample-wise deconvolution pro-
vides a valuable opportunity to study genetic regulations in specific 
cell types with comparable power to bulk tissue eQTL studies.

Decon-eQTLs explained SCZ GWAS heritability that was missed 
by single-cell and bulk tissue eQTLs. Nearly six times more SCZ 
GWAS heritability was explained by decon-eQTLs than that by single-
cell eQTLs. Integrating decon-eQTLs and bulk tissue eQTLs explained 
63% of SCZ GWAS heritability, which was 14% more than heritability 
explained only by bulk tissue eQTLs. These results suggest that SCZ 
GWAS risk may be mediated by genetic regulations in specific cell 
types, and such an effect can be captured by deconvoluted data.

Decon-eQTL mapping can unveil genes that are associated with 
the genetic risk of SCZ. A critical application of decon-eQTLs in-
volves identifying genes and associated pathways that link with risk 
loci, as highlighted by GWAS, within specific cell types. Illustrating 
this, our study identified a significant association between rs12466331 
and CALM2 in excitatory neurons—an association not found in bulk 
tissue data (fig. S8A). CALM2, a gene encoding calmodulin, is highly 
expressed in excitatory neurons (fig. S8B) and has been found down-
regulated in the postmortem brains of patients with SCZ (37). 
Moreover, rs12466331 was colocalized with SCZ GWAS risk locus 
rs144040771 (fig. S8C). These data suggest that rs12466331 may regu-
late the expression of CALM2 in excitatory neurons and that dys-
regulation of such a pathway may be associated with SCZ. This 
integration of decon-eQTLs and GWAS data can be applied to multiple 
complex diseases. Thus, mapping decon-eQTLs enabled molecular 
mechanisms of genetic risk of brain disorders in specific cell types.

Cell-type eQTLs mapping with deconvoluted data is an advanced 
alternative for cell-type interaction eQTLs (ieQTLs) mapping. Cell 
proportions have been used to map eQTLs associated with cell types, 
which are called ieQTLs (27). The genetic regulators that were as-
sociated with gene expressions when the cell proportion varied 
were mapped. Therefore, ieQTLs are the results of interaction be-
tween genetic regulation and cell-type enrichment, while decon-
eQTLs are based on deconvoluted gene expressions, which are the 
direct relationship between genotypes and cell-type expressions for 
each SNP-gene pair. Both ieQTLs and decon-eQTLs were mapped 

with ROSMAP data in the current study. Nearly 20 times more 
decon-eQTLs (n = 27,339) were identified than ieQTLs (1822) for 
the same sample size. Moreover, decon-eQTL is more robust than 
ieQTL. Compared to single-cell eQTLs, the replication rate of decon-
eQTLs (averaged Pi1  =  0.38) is superior to ieQTLs (averaged 
Pi1 = 0.16; fig. S9).

This study offers a practical guideline for conducting brain cell de-
convolution. Using dtangle to estimate cell proportions and bMIND 
to estimate cell-type gene expressions is recommended. Rare cell types 
(proportion < 5%) are not recommended to be included in cell de-
convolution analysis.

This study has several limitations. The results were based on the 
analysis of human brain data with specific parameters tested. More 
tests may be needed to generalize the conclusion to other tissues and 
situations. In addition, unsupervised deconvolution methods have 
not been evaluated by this study. This evaluation only focused on the 
major cell types in brains, and the deconvolution performance of 
cell subtypes could be further explored to validate our findings.

This study comprehensively evaluated the commonly used methods 
for sample-wise deconvolution of cell proportions and cell-type gene 
expressions. The downstream analysis of eQTL mapping, GWAS heri-
tability enrichment, and differential expression was also evaluated. Our 
analysis is a crucial methodological foundation for other studies where 
deconvolution can be used. A practical guideline is offered for a broad 
community interested in cell type–specific studies of brain functions 
and disorders when only bulk tissue transcriptome is available.

MATERIALS AND METHODS
Data downloading and processing
Three RNA-seq data from brain tissues and brain organoids were 
used (Table 1). The randomization and blinding of sample collection 
and ethic approval were described in original studies.
Bulk-tissue RNA-seq data
The trimmed mean of M-values (TMM) normalization (38) was ap-
plied to the raw count data, and log-transformed counts per million 
reads mapped (log2CPM) was used. Genes with log2CPM > 0.1 in at 
least 25% of samples were retained. Connectivity between samples 
was calculated by weighted correlation network analysis (39) and was 
normalized by the z-score method. Samples with z-score connectivity 
< (−3) were labeled as outliers and were removed from downstream 
analysis. Data were then quantile normalized with the preprocessCore 
(40) package. The batch effect was corrected with the combat function 
in the sva package (41).
sc/snRNA-seq data
The quantified count matrix and metadata were used. The ROS-
MAP snRNA-seq data were downloaded from www.synapse.
org/#!Synapse:syn18681734. For CMC snRNA-seq data, the prepro-
cessing pipeline can be found in the Capstone paper (syn48958066). 
The preprocessing of scRNA-seq data of brain organoids can be 
found in (28).
IHC data
IHC data were downloaded from https://github.com/ellispatrick/
CortexCellDeconv. Cell proportions were normalized according to 
the sum-to-1 constraint.

Construction of references and pseudo-bulks
Two types of references were created using the sc/snRNA-seq count 
matrix. DSA, dtangle, OLS, and CIBERSORT require a reference of 
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pooled cells. To construct the pooled-cell reference, the expression 
count matrix (genes by cells) from the sc/snRNA-seq data was aver-
aged by cell types for each gene. The averaged count matrix was then 
normalized into CPM and transformed using a log2 transformation. 
On the other hand, MuSiC and Bisque require an input of single-cell 
reference, which directly used the gene-by-cell count matrix from 
the sc/snRNA-seq data.

Marker gene identification
Marker genes were identified at both the single-cell level and pseudo-
bulk level. At the single-cell level, marker genes were determined by 
assessing the differential expression between the cell group of target 
cell type and the cell group of the cell type exhibiting the closest 
expression profiles. Similarly, at the pseudo-bulk level, marker genes 
were identified by evaluating the expression differences between 
pseudo-bulk samples of the target cell type and those of the cell type 
with the most similar expression patterns to the target cell type. At 
the single-cell level, marker genes were identified with Seurat (42). 
Genes having a proportion of zero expression > 15% in the target 
cell type were removed. The Wilcoxon signed-rank test was used to 
test the expression difference. Genes with log2FC > 1 and FDR-
corrected P value < 0.05 were defined as marker genes at the single-
cell level. At the pseudo-bulk level, marker genes were tested in 
DESeq2 (43). The likelihood ratio test was used to test the expres-
sion difference between the two cell groups. Marker genes with log-
2FC > 2 and FDR-corrected P value < 0.05 were defined as marker 
genes at the pseudo-bulk level.

Estimation of cell proportions
Three inputs were required for all deconvolution methods: bulk tissue 
data, reference, and marker genes. Batch-corrected data were used 
as input for bulk tissue data. The intersection of marker genes iden-
tified at the single-cell level and the pseudo-bulk level was used as 
input of marker genes. For DSA, dtangle, OLS, and CIBERSORT, 
pooled-cell reference was used. For MuSiC and Bisque, single-cell 
reference was used. The genes that have no expression variation 
across cell types were removed from the reference.

Evaluation of estimated cell proportions
Two ground truths were used to evaluate estimated cell proportions: 
cell proportions from IHC data and cell proportions from sc/
snRNA-seq data. For one sample, cell proportions from sc/snRNA-
seq were calculated by dividing the number of cells of one specific 
cell type by the total number of cells. RMSE was used as an evalua-
tion metric. The formula of RMSE is

yi is the estimated cell proportion and ŷ  is the ground truth. n is 
the number of cell types in the sample-level evaluation, and n is the 
number of samples in the cell-type level evaluation.

Estimation of cell-type expressions
Estimation of cell-type expression requires three inputs: bulk tissue 
data, cell proportions, and reference. Batch-corrected data was used 
as input for bulk tissue data. The proportion from DSA, dtangle, 
OLS, CIBERSORT, MuSiC, and Bisque was used independently. 

Pooled-cell reference was used as prior for bMIND and swCAM. For 
TCA, only bulk tissue data and cell proportions were used to esti-
mate cell type expressions for each sample. Data were transformed 
into a log scale for bMIND and TCA and a linear scale for swCAM.

Evaluation of estimated cell-type expressions
To construct ground truth for evaluating estimated cell-type expres-
sions, the count matrix from sc/snRNA-seq was averaged by cell types 
and individuals for each gene. Then, the averaged count matrix was 
normalized into CPM and was log2-transformed. Sample-to-sample 
Spearman’s correlation was tested between estimated expressions and 
ground truth for each cell type.

Genotyping quality control
The ROSMAP whole-genome sequencing dataset was downloaded 
from www.synapse.org/#!Synapse:syn11724057. The data have been 
imputed. Only individuals with both genotype and deconvolution re-
sults were retained for the eQTL analysis. SNPs with minor allele 
frequency (MAF) < 5% or deviating from Hardy-Weinberg equilibri-
um (P < 1 × 10−6) were excluded. After quality control, we obtained 
high-quality genotypes for ~4.9 million SNPs (MAF > 5%) in 861 
individuals.

eQTL mapping
decon-eQTLs
To identify decon-eQTLs, we tested the associations between geno-
types and deconvoluted expressions (phenotypes). We mapped cis-
eQTLs within a 1-Mb window of the TSS of each gene using QTLtools 
(44). For each gene, QTLtools performed permutations of the expres-
sion data and recorded the best P value for each SNP in the cis win-
dow. We used estimated cell-type expressions by bMIND as phenotype 
data, and phenotype data of eight cell types were tested independently. 
Quantile normalization was used for normalizing expression matrixes 
before eQTL mapping. Probabilistic estimation of expression residuals 
(PEER) was used to identify hidden covariates in the data (45). A total 
of 8 to 35 PEER factors were included as covariates in eQTL mapping.
Bulk tissue eQTLs
To map bulk tissue eQTLs, the same eQTL mapping procedure was 
performed on the bulk tissue expression data. A total of 33 PEER 
factors were included as covariates in bulk tissue eQTL mapping.

Replication of decon-eQTLs in BrainGVEX data
To replicate decon-eQTLs, we deconvoluted RNA-seq data from 
BrainGVEX (29) and mapped eQTLs with the deconvoluted data. A 
total of 430 brain samples with both genotypes and RNA-seq data 
were used. dtangle was used to estimate cell proportions, with the 
marker genes and the reference from ROSMAP snRNA-seq data. 
Then, bulk tissue data were deconvoluted into cell-type expressions 
for eight major cell types with bMIND. The same eQTL mapping 
process was performed on the deconvoluted data to identify decon-
eQTLs in BrainGVEX data.

 Pi1 statistic (π1) was used to measure the replication rate of 
decon-eQTLs in other datasets. Pi1 is the fraction of deconvolution 
eSNP-eGene pairs (testing data) that are true associations in single-
cell−/bulk tissue−/decon-eQTLs (reference data). To compute the 
Pi1 statistic, we extracted nominal P values of decon-eQTLs (nominal 
P value < 0.05) that overlapped with eQTLs in reference data. Using 
the qvalue package (30) function, we computed the Pi0 value and 
defined the Pi1 as 1 − Pi0 for each cell type independently.

RMSE =

√

√

√

√

√

√

n
∑
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Replication of decon-eQTLs in single-cell eQTLs
To measure the replication rate of decon-eQTLs in the sc/snRNA-
seq dataset, we downloaded cell-type eQTLs identified from the 
snRNA-seq data of 192 individuals (31). With the single-cell eQTLs 
as a reference, Pi1 statistics were calculated for eight cell types in-
dependently.

SCZ GWAS heritability enrichment
sLDSC (32) was used to calculate SCZ GWAS heritability enrichment 
in decon-eQTLs. GWAS summary statistics from three published 
SCZ studies were downloaded (46–48). Conditional analysis was 
performed on decon-eQTLs to select the top SNP for each gene 
[r2 > 0.2 in 1000 Genomes European individuals (49)]. Then, script 
ldsc.py with the “--l2” parameter was used to generate the gene set–
specific annotation and linkage disequilibrium (LD) score files, and 
ldsc.py with the “--h2-cts” parameter was used to generate stratified 
heritability by decon-eQTLs of eight cell types.

Colocalization of decon-eQTLs and GWAS signals
For each gene in decon-eQTLs, the colocalization between eSNP and 
SCZ GWAS signals (50) was tested. The “coloc.abf ” function in the 
Coloc (51) package (version 5.1.0) was used for testing. The thresh-
old for significance is SNP.PP.H4 > 0.95.

Differential expression analysis
Differential expression analysis was performed on deconvoluted data 
and bulk tissue data to identify genes associated with AD, SCZ, and 
brain development. For AD and SCZ, differential expression analysis 
was conducted in each cell type with the Wilcoxon rank-sum test. 
For brain development, the linear regression model was used to iden-
tify genes showing significant expression changes across the maturity 
stage of brain organoids. The P values were corrected by FDR. Genes 
with FDR q value < 0.05 were identified as PAGs.

Deconvoluted PAGs were compared to PAGs from sc/snRNA-
seq data for replication. Single-cell PAGs for AD (52) and SCZ (53) 
were downloaded from the original study. For brain development, 
PAGs were identified in pseudo-bulk data of brain organoids with 
the same procedure discussed above in the differential expression 
analysis section.

Supplementary Materials
This PDF file includes:
PsychENCODE Consortium author and collaborator list
Figs. S1 to S9
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