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Abstract

Motivation: Recent advances in spatial transcriptomics allow spatially resolved gene expression measurements with
cellular or even sub-cellular resolution, directly characterizing the complex spatiotemporal gene expression landscape and
cell-to-cell interactions in their native microenvironments. Due to technology limitations, most spatial transcriptomic
technologies still yield incomplete expression measurements with excessive missing values. Therefore, gene imputation is
critical to filling in missing data, enhancing resolution, and improving overall interpretability. However, existing methods
either require additional matched single-cell RNA-seq data, which is rarely available, or ignore spatial proximity or
expression similarity information.
Results: To address these issues, we introduce Impeller, a path-based heterogeneous graph learning method for spatial
transcriptomic data imputation. Impeller has two unique characteristics distinct from existing approaches. First, it
builds a heterogeneous graph with two types of edges representing spatial proximity and expression similarity. Therefore,
Impeller can simultaneously model smooth gene expression changes across spatial dimensions and capture similar gene
expression signatures of faraway cells from the same type. Moreover, Impeller incorporates both short- and long-range
cell-to-cell interactions (e.g., via paracrine and endocrine) by stacking multiple GNN layers. We use a learnable path
operator in Impeller to avoid the over-smoothing issue of the traditional Laplacian matrices. Extensive experiments on
diverse datasets from three popular platforms and two species demonstrate the superiority of Impeller over various state-
of-the-art imputation methods.
Availability and Implementation: The code and preprocessed data used in this study are available at
https://github.com/aicb-ZhangLabs/Impeller and https://zenodo.org/records/11212604.
Contact: zhang.jing@uci.edu.
Supplementary Information: Additional information is shown in the supplementary file.
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Introduction

The orchestration of cellular life hinges on the precise

control of when and where genes are activated or silenced.

Characterizing such spatiotemporal gene expression patterns

is crucial for a better understanding of life, from development

to disease to adaptation (Mantri et al. 2021). While single-

cell RNA sequencing (scRNA-seq) is a revolutionary and

widely-available technology that enables simultaneous gene

expression profiling over thousands of cells, it usually needs

to dissociate cells from their native tissue and thus loses the

spatial context (Lähnemann et al. 2020). Recent advances

in spatial transcriptomics (St̊ahl et al. 2016) allow spatially

resolved gene expression measurements at a single-cell or even

sub-cellular resolution, providing unprecedented opportunities

to characterize the complex landscape of spatiotemporal gene

expression and understand the intricate interplay between cells

in their native microenvironments (Strell et al. 2019). However,

due to technical and biological limitations, most spatial

transcriptomic profiling technologies still yield incomplete

datasets with excessive missing gene expression values,

hindering our biological interpretation of such valuable datasets

(Choe et al. 2023). Therefore, gene imputation is a critical

task to enrich spatial transcriptomics by filling in missing data,

enhancing resolution, and improving the overall quality and

interpretability of the datasets.
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2 Ziheng et al.

Several methods have been successfully developed for gene

imputation in spatial transcriptomics, which can be broadly

summarized into two categories - reference-based and reference-

free approaches. Since scRNA-seq data usually offers a deeper

dive into transcriptome profiling, reference-based methods

integrated spatial transcriptomic data with matched scRNA-

seq data from the same sample for accurate imputation.

While promising, these referenced-based methods usually suffer

from two limitations. First, most studies do not always have

matched scRNA-seq data, especially those using valuable and

rare samples. Second, even with matched data, there can be

significant gene expression distribution shifts due to sequencing

protocol differences (e.g., single nuclei RNA-seq vs. whole cell

spatial transcriptomics) (Zeng et al. 2022).

Researchers also employed reference-free methods for direct

gene expression imputation. For instance, traditional gene

imputation methods designed for scRNA-seq data, such as

scVI (Lopez et al. 2018), ALRA (Linderman et al. 2018),

Magic (van Dijk et al. 2018) and scGNN (Wang et al. 2021),

have been adapted for spatial transcriptomic data imputation.

While effectively capturing cell-type-specific gene expression

signatures, these methods completely ignored the rich spatial

information, resulting in suboptimal results. Later, scientists

emphasized the importance of spatial context for cell-to-cell

interaction (CCI) in modulating expression changes in response

to external stimuli (Armingol et al. 2021). Therefore, Graph

Neural Network (GNN) based methods have been developed to

mimic CCIs for imputation tasks with improved performance.

However, different types of CCI involve distinct cell signaling

mechanisms with varying interaction ranges. Existing GNN-

based methods employed very shallow convolutional layers for

computational convenience, successfully modeling short-range

CCI (e.g., via autocrine and juxtacrine) but ignoring long-

range interactions (e.g., via paracrine and endocrine). As a

result, they cannot fully exploit the spatial information for gene

expression imputation.

To address the abovementioned issues, we propose Impeller,

a path-based heterogeneous graph learning method for accurate

spatial transcriptomic data imputation. Impeller contains two

unique components to exploit both transcriptomic and spatial

information. First, it builds a heterogeneous graph with nodes

representing cells and two types of edges describing expression

similarity and spatial proximity. Therefore, the expression-

based edges allow it to capture cell-type-specific expression

signatures of faraway cells from the same type, and the

proximity-based edges incorporate CCI effects in the spatial

context. Second, Impeller models long-range CCI by stacking

multiple GNN layers and uses a learnable path operator

instead of the traditional Laplacian matrices to avoid the over-

smoothing problem. Extensive experiments on diverse datasets

from three popular platforms and two species demonstrate the

superiority of Impeller over various state-of-the-art imputation

methods.

Our main contributions are summarized below:

• We propose a graph neural network, Impeller, for reference-

free spatial transcriptomic data imputation. Impeller

incorporates cell-type-specific expression signatures and

CCI via a heterogeneous graph with edges representing

transcriptomic similarity and spatial proximity.

• Impeller stacks multiple GNN layers to include both

short- and long-range cell-to-cell interactions in the spatial

context. Moreover, it uses a learnable path-based operator

to avoid over-smoothing.

• To the best of our knowledge, this is the first paper to

combine cell-type-specific expression signatures with spatial

short- and long-range CCI for gene expression imputation.

• We extensively evaluate Impeller alongside state-of-the-art

competitive methods on datasets from three sequencing

platforms and two species. The results demonstrate that

Impeller outperforms all of the baselines.

Related Work

Imputation Methods Ignoring Spatial Information
Earlier spatial transcriptomic data imputation methods

adapted the computational strategies originally developed for

scRNA-seq data, overlooking the spatial coordinate information

of each spot. For instance, eKNN (expression-based K

nearest neighbor) and eSNN (expression-based Shared nearest

neighbor) are methods implemented using the Seurat R-package

that rely on gene expressions of nearest neighbors. MAGIC

adopted data diffusion across similar cells to impute missing

transcriptomic data. ALARA used low-rank approximation to

distinguish genuine non-expression from technical dropouts,

thus preserving true gene absence in samples. scVI used a deep

variational autoencoder for gene imputation by assuming the

read counts per gene follow a zero-inflated negative binomial

distribution. However, these methods completely ignored the

rich spatial information, resulting in sub-optimal performance.

Imputation Methods Utilizing Spatial Information
Later on, several methods were developed to exploit the

spatial coordinate information to improve imputation accuracy.

Since scRNA-seq data is usually sequenced deeper to provide

more accurate expression measurements, several methods

incorporated additional scRNA-seq data during the imputation

process. For instance, gimVI used a low-rank approximation

and includes scRNA reference (Lopez et al. 2019). Tangram

mapped scRNA-seq data onto spatial transcriptomics data

to facilitate imputation by fitting expression values on the

shared genes (Biancalani et al. 2021). STLearn employed gene

expression data, spatial distance, and tissue morphology data

for imputing absent gene reads (Pham et al. 2020). However,

additional scRNA-seq data is not always available and there

can be large gene expression distribution shifts between these

datasets due to differences in sequencing protocols (e.g., single-

cell vs. single-nuclei), resulting in limited applications for

reference-based methods.

On the other hand, several reference-free methods have

been developed for more generalized settings. For example,

the seKNN (spatial-expression-based K nearest neighbor)

and seSNN (spatial-expression-based shared nearest neighbor)

models (Butler et al. 2018; Hao et al. 2021; Satija et al.

2015; Stuart et al. 2019) incorporated cell-to-cell distance when

defining the KNN for imputation tasks. Recently, STAGATE

(Dong and Zhang 2022) is a graph attention auto-encoder

framework that effectively imputes genes by integrating spatial

data and cell type labels. Overall, these methods did not deeply

integrate and exploit the full potential of combining expression

and spatial data.
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Fig. 1. The overview of Impeller. (A) Given observed matrix Xobs ∈ Rn×m of n cells and m genes, and cells’ spatial coordinates C ∈ Rn×2, we

build the spatial graph Gs and the gene similarity graph Gg. The learned spatial and gene similarity path operators ops and opg are obtained through

paths and pathg, respectively. Convoluting cell features with path operators yields spatial/gene similarity embeddings, which are concatenated and

fed into a multilayer perceptron for final gene imputation. (B)-(C) Comparison of neighbor aggregation methods in GNNs. B: Traditional GNN stacks

multiple layers to gather information from distant nodes. C: The path-based GNN, Impeller samples a path to the target node

Method

Problem Definition
Here, we aim to impute the excessive missing gene expression

values in spatial transcriptomics data without matched

reference scRNA-seq data. Formally, given a sparse cell-by-gene

count matrix Xobs ∈ Rn×m which represents observations for

n cells across m genes, and the spatial coordinates C ∈ Rn×2

of these cells, our goal is to impute the gene expression matrix

X̂ ∈ Rn×m. Xobs is derived from the ground truth matrix

Xgt ∈ Rn×m, which contains the observed non-zero entries

pre-masking. To simulate real-world data conditions, 10% of

the non-zero entries in Xgt are masked to form a test set and

another 10% for validation, thus creating Xobs. This matrix

serves as the input for our imputation model. The major

challenge is to generate X̂ that is as close as possible to the

ground truth gene expression Xgt, using both the observed gene

expressions in Xobs and the spatial information in C.

Heterogeneous Graph Construction
As shown in Fig. 1, we build our Impeller model based on

two widely-accepted biological insights - 1) gene expression can

be modulated by surrounding cells via CCI; 2) faraway cells of

the same cell type may share stable gene expression signatures.

Therefore, Impeller first builds a heterogeneous graph G to

fully exploit both spatial and cell-type information, with nodes

and edges representing cells and their relationships.

Specifically, G contains two complementary graphs: a

spatial graph (Gs) and a gene similarity graph (Gg). Edges

in Gs represent the cell’s spatial proximity to model CCI,

while edges in Gg denote the cell’s transcriptomic similarity

to capture the cell-type-specific expression signatures.

Spatial Graph Construction

The spatial graph Gs(Vs,Es) is created based on the spatial

distance between cells, with nodes Vs representing the cells

and edges in Es connecting nearby cells. Specifically, an edge

es,{ij} in Gs is established between vi, vj ∈ Vs if and only if

their Euclidean distance di,j is less than a predefined threshold

dthr, which can be represented as:

es,{ij} = if ||Ci − Cj||2 ≤ dthr else 0, (1)

where Ci = [Ci,0, Ci,1] and Cj = [Cj,0, Cj,1] are two

dimensional spatial coordinates of cell i and j, respectively.

Gene Similarity Graph Construction

Impeller also builds a gene expression similarity graph Gg

similar to that in scRNA-seq analysis. Specifically, we first

extract the highly variable genes (default 3100). Then, for

each target cell, we select its top K most similar cells.

Mathematically,

eg,{ij} = 1 if j ∈ Kg(X
h
i ) else 0, (2)

where Xh
i is the expression vector of highly variable genes in

cell i, Kg(X
h
i ) returns the top kg cells most similar to cell i

(e.g., using the Euclidean distance as the similarity metric),

and eg,{ij} is the edge between cells i and j in Gg.

GNN Model on Heterogeneous Graph
With the heterogeneous graph built, Impeller uses a path-based

heterogeneous GNN to synthesize the impacts of spatial CCI

(Gs) and cell-type-specific expression signatures (Gg) for the

imputation task. We introduce the problem of traditional GNN,

our learnable path operator, and the overall architecture of

Impeller as follows.

Problem of Traditional GNN

We aim to impute the missing gene expression values in

spatial transcriptomics data by incorporating its physical

and transcriptional neighbors via a heterogeneous graph. By

treating expression profiles as initial cell embeddings (f (0) =

Xobs), the l-th (l ∈ {1, 2, ..., L − 1} ) GNN layer follows a

message passing form (Duan et al. 2024, 2023; Duan et al.,

2022a,b,c; Wang et al. 2022, 2019; Xu et al. 2020, 2021) to
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4 Ziheng et al.

generate cell i’s embedding in layer l as follows:

f
(l)
i = γΘ(f

(l−1)
i

⊕
j∈N s(i)

ϕΘ(f
(l−1)
i , f

(l−1)
j , es,{ij})

⊕
j∈N g(i)

ψΘ(f
(l−1)
i , f

(l−1)
j , eg,{ij})), (3)

where f
(l)
i ∈ Rd

(l)
emb is the embedding of cell i at l-th layer, d

(l)
emb

is the embedding dimension at l-th layer, and N s(i) and Ng(i)

are neighboring cell i in Gs and Gg.
⊕

denotes a differentiable,

permutation invariant function, e.g., sum, mean, and γΘ, ϕΘ,

and ψΘ denote differentiable functions such as MLPs. After

L layers, we obtain the imputed gene expressions, denoted as

X̂ = f (L) ∈ Rn×m.

In order to capture long-range CCI interaction, we have

to include relatively far away cells by stacking multiple GNN

layers via a larger L. Traditional Laplacian matrices-based

GNN suffers from over-smoothing, resulting in deteriorated

performance as L increases (Eliasof et al. 2022). Therefore, we

introduce a learnable path operator to overcome this issue and

better capture the long-range CCI.

Learnable Path Operator

We first define path Ps = (s1, s2, ..., sks
) on Gs of length ks

and path Pg = (g1, g2, ..., gkg
) on Gg of length kg, where si

and gi are node (cell) indexes. Node embeddings at l-th layer

are denoted by f (l)si
∈ Rd

(l)
emb and f (l)gi

∈ Rd
(l)
emb . Then, op(l)

s ∈

Rks×d
(l)
emb and op(l)

g ∈ Rkg×d
(l)
emb are two learnable path operators

which allow us to convolve node embeddings along paths:

op
(l)
s (Ps) ∗ f

(l)
=

ks∑
i=1

op
(l)
s,i ∗ f

(l)
si

=

ks∑
i=1

d
(l)
emb∑

j=1

op
(l)
s,i[j] · f

(l)
si

[j],

op
(l)
g (Pg) ∗ f

(l)
=

kg∑
i=1

op
(l)
g,i ∗ f

(l)
gi

=

kg∑
i=1

d
(l)
emb∑

j=1

op
(l)
g,i[j] · f

(l)
gi

[j],

(4)

where ′∗′ denotes the convolution operation, and ′·′ symbol is

the multiplication operation between two scalars. Here op
(l)
s,i[j],

op
(l)
g,i[j], f

(l)
si

[j] and f(l)
gi

[j] represent the j-th scalars of the

d
(l)
emb-dimensional vector op

(l)
s,i, op

(l)
g,i, f

(l)
si

and f (l)gi
, respectively.

Starting from each node, we generate multiple paths on Gs and

Gg and aggregate results for a more expressive representation:

op
(l)
s (Ps) ∗ f

(l)
=

1

Ts

∑
Ps∈Ps

op
(l)
s (Ps) ∗ f

(l)
,

op
(l)
g (Pg) ∗ f

(l)
=

1

Tg

∑
Pg∈Pg

op
(l)
g (Pg) ∗ f

(l)
,

(5)

where Ps and Pg are sets of paths sampled from the Gs and

Gg, each containing Ts and Tg paths. Each path Ps ∈ Ps and

Pg ∈ Pg are separately convolved using op(l)
s or op(l)

g , and the

results are averaged to acquire the node embeddings.

The Overall Architecture of Impeller

After convolving both spatial and gene similarity paths,

we concatenate their embeddings to form the overall node

embeddings, as in

f
(l+1)

= σ
(
W

(l)
1 [op

(l)
s (Ps) ∗ f

(l)
, op

(l)
g (Pg) ∗ f

(l)
]
)
, (6)

where σ(·) denotes the ReLU activation function, W(l) ∈
Rd

(l+1)
emb ×2∗d(l)

emb is the learnable weight matrix, d
(l)
emb is

Table 1. Summary of datasets.

Platform Organism
Sample

ID

Raw Matrix

(Cell, Gene)

Raw

Density

Filter Matrix

(Cell, Gene)

Filter

Density

# Imputed

Entries

10xVisium

Human

Dorsolateral

Prefrontal

Cortex

(DLPFC)

151507 4226, 33538 0.042 4117, 4028 0.261 437240

151508 4384, 33538 0.036 4148, 3342 0.258 358184

151509 4789, 33538 0.043 4700, 4188 0.258 508186

151510 4643, 33538 0.041 4547, 3908 0.259 461112

151669 3661, 33538 0.054 3617, 5246 0.277 525930

151670 3498, 33538 0.050 3433, 4909 0.272 457770

151671 4110, 33538 0.055 3988, 5539 0.278 615111

151672 4015, 33538 0.052 3809, 5273 0.279 561166

151673 3639, 33538 0.066 3628, 6538 0.286 677473

151674 3673, 33538 0.080 3668, 7796 0.305 871032

151675 3592, 33538 0.054 3565, 5454 0.267 518515

151676 3460, 33538 0.058 3449, 5784 0.274 545920

Stereoseq Mouse / 19109, 14376 0.024 4036, 1581 0.193 123444

SlideseqV2 Mouse / 20139, 11750 0.031 5161, 2611 0.217 292418

the embedding dimension at l-th layer, and [·, ·] denotes

concatenation operation. Then, Impeller tries to minimize the

Mean Squared Error (MSE) between X̂ and Xgt:

L =

∑n
i=1

∑m
j=1 1[Xgt,(i,j) ̸= 0](X̂i,j −Xgt,(i,j))

2∑n
i=1

∑m
j=1 1[Xgt,(i,j) ̸= 0]

, (7)

where 1[·] is an indicator function that equals 1 if the condition

inside brackets is met (Xgt,(i,j) ̸= 0), and 0 otherwise. The loss

is computed only over non-zero entries of Xgt.

Computational Complexity Analysis

k-hop Complexity Analysis

Traditional GNNs need to gather information from k-hop

neighbor nodes after stacking of k layers. Given the complexity

of each layer as O(n × dt), where n is the number of nodes

and dt is the average node degree, the overall complexity

becomes O(n × dt × k). In contrast, Impeller can directly

access neighbors up to k-hop distance via a single layer by

setting ks = kg = k. The computational complexity per layer

for Impeller is O(n × (Ts × ks + Tg × kg)), with Ts and Tg

representing the number of paths in Gs and Gg, ks and kg

denoting path lengths. As a result, when Ts < dt (a condition

satisfied in our task), Impeller offers superior computational

efficiency.

The Number of Parameters

Traditional GNNs have O(d
(l)
emb × d

(l+1)
emb ) parameters per layer

while the path operator of Impeller adds (ks + kg) ∗ d(l)emb

parameters. Since ks + kg is typically much smaller than

d
(l+1)
emb , Impeller’s number of parameters remains on par with

traditional GNNs.

Experiments

Detailed Experimental Setup

Data Sources and Preprocessing

In our study, we tested Impeller using diverse datasets

from three popular sequencing platforms and two organisms.

Specifically, we included 10X Visium datasets from human

dorsolateral prefrontal cortex (DLPFC), (Maynard et al. 2021),

Steroseq datasets from mouse olfactory bulb (Chen et al. 2021),

and Slide-seqV2 from mouse olfactory bulb (Stickels et al.

2021) in our analyses. Detailed attributes of these datasets are

summarized in Table 1 (filter details and visualizations see the

appendix). After standard pre-processing and normalization

procedures, we downsampled the data according to scGNN,

where 10% of non-zero entries in the dataset were used as a

Page 4 of 9Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae339/7684233 by U

C
 - Irvine user on 08 June 2024



Impeller: A Graph Method for Spatial Transcriptomic Data Imputation 5

Table 2. Gene imputation benchmark. The best results are bolded. Results marked ’NA’ for stLearn indicate unavailable HE stained images

required by the method.

Metric Method

Platform & Dataset

10xVisium Stereoseq SlideseqV2

DLPFC Mouse Mouse

151507 151508 151509 151510 151669 151670 / /

L
1
D
is
ta

n
c
e wo

scVI 0.794±0.004 0.838±0.006 0.800±0.002 0.670±0.003 0.810±0.003 0.696±0.005 1.442±0.005 1.127±0.006

ALRA 0.499±0.003 0.512±0.001 0.490±0.001 0.496±0.001 0.467±0.002 0.472±0.002 0.406±0.013 0.649±0.066

eKNN 0.274±0.001 0.281±0.001 0.275±0.000 0.275±0.001 0.269±0.000 0.272±0.000 0.205±0.001 0.294±0.001

eSNN 1.254±0.001 1.373±0.001 1.266±0.001 1.294±0.000 1.017±0.001 1.071±0.001 2.802±0.002 2.071±0.002

Magic 0.779±0.001 0.825±0.001 0.787±0.000 0.664±0.001 0.795±0.001 0.692±0.000 1.324±0.001 1.080±0.000

scGNN 0.583±0.011 0.665±0.085 0.589±0.011 0.584±0.004 0.550±0.006 0.532±0.009 0.819±0.240 0.664±0.018

w

gimVI 0.838±0.003 0.890±0.003 0.835±0.001 0.737±0.002 0.863±0.003 0.765±0.001 1.325±0.001 1.153±0.002

seKNN 0.306±0.000 0.309±0.001 0.307±0.000 0.307±0.000 0.281±0.000 0.289±0.000 0.263±0.001 0.876±0.001

seSNN 1.254±0.001 1.371±0.001 1.266±0.000 1.294±0.000 1.017±0.001 1.072±0.001 2.775±0.002 1.998±0.001

Tangram 1.691±0.001 1.811±0.001 1.689±0.000 1.420±0.000 1.728±0.001 1.474±0.000 2.899±0.001 2.185±0.000

STLearn 1.333±0.001 1.423±0.001 1.332±0.001 1.148±0.001 1.369±0.002 1.206±0.001 NA NA

STAGATE 0.297±0.001 0.300±0.002 0.295±0.005 0.294±0.004 0.274±0.005 0.278±0.002 0.289±0.006 0.502±0.007

Impeller 0.248±0.001 0.252±0.003 0.247±0.003 0.254±0.003 0.242±0.004 0.237±0.001 0.190±0.005 0.292±0.005

C
o
si
n
e
S
im

il
a
ri
ty

wo

scVI 0.907±0.001 0.913±0.001 0.906±0.001 0.903±0.001 0.909±0.001 0.904±0.001 0.941±0.001 0.919±0.002

ALRA 0.948±0.002 0.952±0.002 0.952±0.001 0.952±0.001 0.938±0.006 0.944±0.003 0.980±0.002 0.927±0.018

eKNN 0.983±0.000 0.984±0.000 0.983±0.000 0.984±0.000 0.979±0.000 0.979±0.000 0.993±0.000 0.989±0.000

eSNN 0.842±0.000 0.841±0.000 0.839±0.000 0.840±0.000 0.846±0.000 0.843±0.000 0.777±0.001 0.838±0.000

Magic 0.915±0.000 0.920±0.000 0.914±0.000 0.909±0.000 0.916±0.000 0.910±0.000 0.968±0.002 0.936±0.000

scGNN 0.933±0.004 0.927±0.016 0.932±0.002 0.936±0.000 0.917±0.002 0.929±0.002 0.948±0.035 0.953±0.002

w

gimVI 0.957±0.000 0.965±0.001 0.955±0.001 0.947±0.001 0.962±0.001 0.948±0.002 0.964±0.000 0.936±0.001

seKNN 0.982±0.000 0.985±0.000 0.982±0.000 0.983±0.000 0.979±0.000 0.980±0.000 0.995±0.000 0.982±0.000

seSNN 0.843±0.000 0.841±0.000 0.840±0.000 0.841±0.000 0.851±0.000 0.847±0.000 0.768±0.000 0.817±0.000

Tangram 0.713±0.001 0.725±0.001 0.717±0.001 0.716±0.001 0.717±0.001 0.715±0.000 0.772±0.001 0.763±0.001

STLearn 0.718±0.000 0.718±0.000 0.715±0.001 0.724±0.000 0.715±0.001 0.717±0.000 NA NA

STAGATE 0.983±0.000 0.985±0.000 0.983±0.001 0.984±0.001 0.980±0.001 0.980±0.000 0.990±0.000 0.961±0.000

Impeller 0.987±0.000 0.988±0.000 0.987±0.000 0.987±0.000 0.983±0.001 0.985±0.000 0.997±0.000 0.990±0.000

R
M

S
E

wo

scVI 0.940±0.005 0.993±0.006 0.949±0.003 0.803±0.003 0.959±0.003 0.834±0.005 1.628±0.005 1.307±0.007

ALRA 0.784±0.003 0.810±0.005 0.766±0.001 0.777±0.001 0.735±0.004 0.743±0.003 0.723±0.036 1.061±0.107

eKNN 0.380±0.001 0.395±0.002 0.382±0.001 0.384±0.001 0.368±0.001 0.374±0.001 0.402±0.008 0.416±0.003

eSNN 1.378±0.001 1.503±0.000 1.393±0.000 1.419±0.001 1.143±0.002 1.199±0.001 2.778±0.001 2.177±0.001

Magic 0.917±0.001 0.972±0.001 0.929±0.000 0.792±0.000 0.936±0.001 0.824±0.000 1.453±0.001 1.238±0.001

scGNN 0.755±0.016 0.850±0.096 0.762±0.011 0.755±0.002 0.717±0.007 0.686±0.010 1.051±0.307 0.842±0.021

w

gimVI 0.955±0.002 1.002±0.001 0.957±0.001 0.858±0.001 0.970±0.002 0.890±0.002 1.448±0.001 1.217±0.004

seKNN 0.392±0.001 0.395±0.000 0.392±0.000 0.392±0.000 0.361±0.001 0.370±0.000 0.361±0.001 0.523±0.000

seSNN 1.354±0.001 1.474±0.000 1.370±0.000 1.395±0.001 1.119±0.001 1.175±0.001 2.770±0.002 2.087±0.001

Tangram 1.768±0.001 1.889±0.001 1.767±0.000 1.503±0.000 1.804±0.001 1.557±0.000 2.970±0.001 2.284±0.000

STLearn 1.516±0.001 1.629±0.001 1.521±0.001 1.300±0.001 1.556±0.002 1.362±0.001 NA NA

STAGATE 0.384±0.002 0.393±0.002 0.379±0.007 0.380±0.007 0.357±0.007 0.365±0.004 0.485±0.008 0.765±0.005

Impeller 0.337±0.001 0.341±0.000 0.336±0.000 0.340±0.004 0.327±0.007 0.323±0.000 0.277±0.002 0.391±0.006

test set, and another 10% of non-zero entries were reserved for

validation. For a fair comparison, we repeat ten times with

different mask configurations.

Baseline Methods for Benchmarking

We conducted a comparative study utilizing 12 state-of-the-art

methods, including reference-free and reference-based methods

that originally require additional scRNA-seq data. However, in

our analysis, we did not use any additional scRNA-seq data for

a fair comparison.

First, we included methods directly adapted from scRNA-

seq data imputation and completely ignored the rich spatial

information, including a deep generative model scVI, a low-

rank approximation model ALRA, nearest neighbors-based

models eKNN and eSNN, a diffusion-based model MAGIC,

and a GNN-based model scGNN. Furthermore, we employed

several imputation methods specifically designed for spatial

transcriptomic data, such as seKNN (spatial-expression-based

K nearest neighbor), and seSNN (spatial-expression-based

shared nearest neighbor). gimVI and Tangram need additional

scRNA-seq from matched samples, so we used a reference-

free implementation available through their website for a fair

comparison. Lastly, we included STAGATE a graph attention

auto-encoder framework by amalgamating spatial data and

gene expression profiles. We use default parameters in most

baseline methods (details see the appendix).

Evaluation Metrics

We first define a test mask M ∈ Rn×m where the entries to

be imputed are marked as 1 and the others as 0. Then we

extract the relevant entries from both the imputed matrix X̂

and the ground truth matrix Xgt to form two vectors: x̂ (from

X̂) and xgt (from Xgt), each of length N , where N is the total

number of entries to be imputed. Following scGNN settings,

we use L1 Distance, Cosine Similarity, and Root-Mean-Square

Error (RMSE) to compare imputed gene expressions x̂ with the
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Table 3. Performance of different receptive fields (RMSE).

Receptive

Field
GCN GraphSAGE GAT GraphTransformer Impeller

2 0.339 ± 0.000 0.352 ± 0.008 0.360 ± 0.005 1.058 ± 0.463 0.310 ± 0.016

4 0.348 ± 0.001 0.362 ± 0.013 0.372 ± 0.022 0.424 ± 0.031 0.286 ± 0.009

8 0.386 ± 0.012 0.496 ± 0.033 0.454 ± 0.024 0.351 ± 0.002 0.279 ± 0.001

16 0.403 ± 0.001 0.617 ± 0.054 0.506 ± 0.061 0.435 ± 0.017 0.286 ± 0.010

32 0.418 ± 0.015 1.466 ± 0.031 1.458 ± 0.037 0.420 ± 0.000 0.277 ± 0.002

64 0.430 ± 0.002 1.615 ± 0.010 1.621 ± 0.004 0.420 ± 0.001 0.302 ± 0.028

128 0.429 ± 0.001 1.629 ± 0.003 1.614 ± 0.022 0.420 ± 0.001 0.357 ± 0.001

ground truth xgt. Mathematically:

L1 Distance = |x̂ − xgt|, (8)

Cosine Similarity(x̂,xgt) =
x̂xgt

T

||x̂|| ∗ ||xgt||
, (9)

RMSE(x̂,xgt) =

√∑N
i=1

(
x̂i − xgti

)2
N

. (10)

Experimental Results

Improved Imputation Accuracy

We benchmarked our performance against 12 leading methods

by assessing imputation accuracy across 14 datasets. These

datasets span three prominent sequencing platforms (10x

Visium, Stereoseq, and Slideseq) and two species (human and

mouse). Table 2 summarizes the performance of Impellers

and other baselines (for results of the other six samples of

the DLPFC dataset, please see the appendix). For a fair

comparison, we didn’t include any additional scRNA-seq data

to facilitate the imputation task. Overall, Impeller consistently

outperforms others in all datasets using L1 distance, Cosine

Similarity, and RMSE, indicating the effectiveness and

robustness of our strategy.

Additionally, we found that most methods utilizing spatial

information (w* group in Table 2) demonstrated higher

imputation accuracy than those ignoring spatial information

(wo* group in Table 2), validating the presence of rich

information in the spatial context. Notably, Impeller surpasses

even the best gene expression-only method, eKNN, with

improvements of 11.32% on 10xVisium DLPFC, 31.09% on

Stereoseq, and 6.01% on SlideseqV2 Mouse. Furthermore,

compared to uniform averaging using KNN, GNN allows

for more flexible neighbor information aggregation for better

imputation accuracy, as reflected by the noticeably improved

performance of Impeller and STAGATE.

Impact of Long-range CCI

To probe disparities between Impeller and traditional GNNs

in capturing long-range cell dependencies, we examined several

models—Impeller, GCN (Kipf and Welling 2016), GraphSAGE

(Hamilton et al. 2017), GAT (Veličković et al. 2017), and

GraphTransformer (Shi et al. 2020)—across varying receptive

fields in the Stereoseq dataset.

In Table 3, GAT and GraphSAGE suffer from gradient

vanishing/exploding issues as more layers are added to capture

long-range CCI, resulting in quickly degraded performance.

GCN works best initially, but its performance drops with more

layers added. This could be because the number of neighbors

grows fast as we increase the receptive field, leaving it difficult

for the target cell to understand the influence of each neighbor.

Furthermore, GraphTransformer starts with high errors at a

receptive field of 2. It works best at a receptive field of 8, but

the error goes up again at 32. This increase in error is similar to

the problem of GCN, as all cells start to look too similar to make
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Fig. 2. RMSE improvement by adding different graph modalities.
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Fig. 3. RMSE w.r.t. different path operators.

useful representations. On the other hand, Impeller effectively

tackles these challenges by the path operator, as reflected by the

consistently improved results until the receptive field of 32. As

the receptive field continues to grow, Impeller’s performance

slightly declines, likely because distant information becomes

less relevant for the target cell’s gene imputation. An additional

perturbation study, demonstrating the effectiveness of Impeller

in capturing CCI, is shown in the appendix.

Advantage of Heterogeneous Graph

In our study, we explored the influence of graph modalities

on imputation accuracy by assessing three key variants: vars,

employing solely the spatial graph; varg, utilizing only the

gene similarity graph; varh, integrating both graphs. We

then calculated the performance improvement from adding

Gg by comparing varh with vars, and the improvement

from adding Gs by comparing varh with varg. As shown

in Fig. 2, the majority of the cases (22 out of 24) exhibit

positive improvements. Specifically, in the DLPFC sample

151674, the inclusion of the gene similarity graph yields a

17.3% improvement, and the 13.6% enhancement is achieved

by adding the spatial graph alone. Similarly, in sample 151508,

the gene similarity graph and the spatial graph contribute

to improvements of 3.6% and 9.9%, respectively. These

results underscore the efficacy of our approach, particularly in

scenarios where the complex interaction between spatial and

gene expression data is pivotal for enhancing gene imputation

accuracy.

Ablation Study
We conducted an ablation study to evaluate the performance of

four primary path operator variants of Impeller: opglo, where

all Impeller layers and channels (each channel representing

one dimension of f (l)) share one path operator; opcha,

where channels share an operator but layers have distinct

ones; oplay, where all layers share one, but channels have
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The L1 Distance, Cosine Similarity, and RMSE w.r.t. different number

of paths Ts and Tg . (D) The L1 Distance, Cosine Similarity and RMSE

w.r.t. different embedding dimensions d
(l)
emb.

individual operators; and opind where every layer and channel

possesses an independent path operator. As depicted in Fig.

3, both opglo and opcha performed poorly on the DLPFC

dataset, indicating the importance of distinct operators for each

channel. Notably, oplay and opind showed comparable results,

suggesting that layer-specific operators might be optional,

depending on the specific application. Another ablation study

regarding different path construction and graph construction

methods is shown in the appendix.

Parameter Analysis
To investigate the influence of Impeller’s various hyper-

parameters, we conducted extensive experiments using the

DLPFC dataset (Sample ID: 151507) and reported the mean

and standard deviation of the imputation accuracy over ten

repetitions.

First, we studied the impact of qs and qg on the RMSE

of a random walk on Gs and Gg following the Node2Vec

mechanism. Higher values of q (i.e., qs and qg) encourage the

walk to sample more distant nodes, enhancing the exploration

of the global graph structure, while lower values bias the walk

towards neighboring nodes, facilitating local exploration. As

shown in Fig. 4A, Impeller exhibits strong robustness with

RMSE from 0.33 to 0.36 when qs and qg varied from 0.1 to

5. However, higher values of qs and qg tend to induce larger

errors. For generality, we selected 1 as the default value for qs

and qg.

We investigated the impact of random walk length (ks and

kg) and layer number (L), shown in Fig. 4B. A path length

of 2 with 10 layers results in maximum errors, reducing our

model to a standard ten-layer GCN. This is because, at this

path length, the model focuses on immediate neighbors, akin to

how traditional GCNs operate. Such a setup, while deep, limits

neighborhood exploration and increases over-smoothing risk.

Conversely, a path length of 8 with 4 layers allows for capturing

broader interactions (up to 28 hops), balancing extended reach

Table 4. Running time summary of graph-based models.

Model # of Parameters Path (ms) Training (ms) Inference (ms) RMSE

GCN 519676 – 21.73±10.44 21.04±10.84 0.37±0.02

GAT 523768 – 23.84±13.25 24.99±11.41 0.36±0.02

GraphSAGE 1035260 – 18.77±11.06 16.97±12.16 0.38±0.01

Transformer 2078704 – 33.94±16.16 38.13±8.71 0.36±0.01

Impeller 538108 1.61±0.60 6.35±0.30 8.43±0.25 0.34±0.00

and computational efficiency, thus avoiding over-smoothing and

optimizing long-range CCI capture.

Next, we examined the impact of the number of random

walks (Ts and Tg). As shown in Fig. 4C, Ts and Tg appeared

to have a minimal effect on results, due to the robustness of

Impeller which resamples at each epoch during training. We

chose 8 as the default number of random walks.

Lastly, we evaluated how the embedding dimension d
(l)
emb

affects Impeller’s performance. As shown in Fig. 4D, smaller

d
(l)
emb (such as 2, 4, 8) leads to limited expressive power and

larger imputation errors. As d
(l)
emb increases to 16, 32, 64,

or 128, Impeller’s expressive power improves and operations

converge well in each run. Due to our early stopping criterion,

we cease training if the validation RMSE doesn’t improve for 50

consecutive epochs. When d
(l)
emb was set to 256 or 512, it’s hard

for Impeller to converge quickly at these dimensions. To strike

a balance between complexity and representational power, we

opted for d
(l)
emb of 64.

In summary, these comprehensive parameter analyses reveal

that Impeller is robust across a wide range of parameter

settings, while still providing tunable options for balancing

computational efficiency and prediction accuracy. These results

further substantiate the effectiveness and practicality of our

proposed model for gene imputation tasks.

Neighbor Visualization
To better understand the differences between traditional GNNs

and our path-based GNN, Impeller, we turned to a visual

example (sample 151507 from the DLPFC dataset). Fig. 1B

shows how the typical GNN gathers information from far-

away neighbors. The center node (red sphere) stacks five GNN

layers to gather information from distant nodes like the one

shown in yellow. But this method sometimes pulls in extra

information from different tissue layers that isn’t needed. On

the other hand, Fig. 1C shows our Impeller model. Instead of

stacking GNN layers, Impeller samples a direct path from the

center node to the target node. While using this direct path

method, Impeller offers better gene imputation performance by

capturing the relevant long-range CCI.

Running Time Analysis
As shown in Table 4, we conducted a comparative model

parameter and runtime analysis with popular graph-based

models (GCN, GAT, GraphSAGE, and Transformer) on

the DLPFC dataset. As discussed in the ‘The Number of

Parameters’ section, our model maintains a parameter count

comparable to traditional GNNs, with the complexity per

layer defined as O(d
(l)
emb × d

(l+1)
emb ). Specifically, our model

introduces only a 3.5% increase in parameters for GCN and

a 2.7% increase for GAT. In contrast, it achieves a 48.0%

reduction in parameters for GraphSAGE and a 74.1% reduction

for GraphTransformer (Table 4). Despite its additional path

sampling step, Impeller remarkably outperformed the others in

training and inference efficiency. This can be partially credited

to leveraging the DGL library’s optimized implementation
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for path sampling1 and the inherently faster multiplication

process used in path-based convolution compared to edge-wise

information aggregation in traditional GNNs. Additionally,

Impeller showed the lowest RMSE, indicating superior

prediction accuracy. Hence, Impeller offers a balanced blend

of efficiency and precision for spatial transcriptomic data

imputation, outperforming other graph-based models.

Conclusion

In this study, we introduced Impeller, a path-based

heterogeneous graph learning approach tailored for spatial

transcriptomic data imputation. By constructing a heterogeneous

graph capturing both spatial proximity and gene expression

similarity, Impeller offers a refined representation of cellular

landscapes. Further, its integration of multiple GNN layers,

coupled with a learnable path operator, ensures comprehensive

modeling of both short and long-range cellular interactions

while effectively averting over-smoothing issues. Benchmark

tests across diverse datasets spanning various platforms and

species underscore Impeller’s superior performance compared

to state-of-the-art imputation methods. This work not

only establishes Impeller’s prowess in spatial transcriptomic

imputation but also underscores its potential to model both

short- and long-range cell-cell interactions.
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