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a b s t r a c t 

Multivariate time series forecasting, which analyzes historical time series to predict future trends, can 

effectively help decision-making. Com plex relations among variables in MTS, including static, dynamic, 

predictable, and latent relations, have made it possible to mining more features of MTS. Modeling com- 

plex relations are not only essential in characterizing latent dependency as well as modeling temporal 

dependence, but also brings great challenges in the MTS forecasting task. However, existing methods 

mainly focus on modeling certain relations among MTS variables. In this paper, we propose a novel end- 

to-end deep learning model, termed M ultivariate T ime Series Forecasting via Het erogeneous G raph N eural 

N etworks (MTHetGNN). To characterize complex relations among variables, a relation embedding module 

is designed in MTHetGNN, where each variable is regarded as a graph node, and each type of edge repre- 

sents a specific static or dynamic relationship. Meanwhile, a temporal embedding module is introduced for 

time series features extraction, where involving convolutional neural network (CNN) filters with different 

perception scales. Finally, a heterogeneous graph embedding module is adopted to handle the complex 

structural information generated by the two modules. Three benchmark datasets from the real world 

are used to evaluate the proposed MTHetGNN. The comprehensive experiments show that MTHetGNN 

achieves state-of-the-art results in the MTS forecasting task. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In real-world scenarios, data can be naturally expressed as mul- 

ivariate time series (MTS), which are generally composed of mul- 

iple single-dimensional time series of the same object, such as the 

bservation of the same object by multiple sensors, the traffic flow 

f each block in the same area, or the exchange rate information of 

ifferent countries [1] . Time series analysis, which analyzes histor- 

cal time series and gets predictions about future trends, has been 

roved to be highly effective in making helpful strategic decisions 

nd received increasing attention in recent years. However, most 

ime series analysis approaches mainly focus on capturing a spe- 

ific relation among variables and may not handle MTS efficiently. 

To provide probabilistic explanations for more reasonable pre- 

ictions, the core of MTS forecasting is to make full use of the 

ollowing two significant characteristics: (1) the internal temporal 

ependency pattern of each single-dimensional time series; (2) the 
∗ Corresponding author. 
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ich spatial relations among different variables in MTS. On the one 

and, the variables in each time series depend on its historical val- 

es. For instance, the activity of the sun shows a periodic pattern 

n historical observations, the t th time value of the variable may be 

imilar to one historical value. On the other hand, regarding each 

ime series in MTS as a variable, the interdependency among vari- 

bles is useful to exploit. For example, the future traffic flow of a 

pecific street is easier to be predicted by introducing the traffic 

nformation of neighboring areas, while the impact from the re- 

ion farther away is relatively slight. Therefore, considering these 

nternal and external relations of MTS can be an effective guide- 

ine for forecasting. Besides, apart from above interdependency in- 

ormation which is available and helpful for MTS forecasting, there 

lso exists relations among variables that are unknown or chang- 

ng over time, implicitly exhibited. However, there is a limitation 

n the existing methods to exploit latent and rich interdependen- 

ies among variables efficiently and effectively. 

Over the years, researchers have adopted different techniques 

nd assumptions to model MTS. Classical MTS forecasting models 

onsider statistic information of historical measurement and make 

he prediction. Autoregressive integrated moving average model 

https://doi.org/10.1016/j.patrec.2021.12.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.12.008&domain=pdf
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ARIMA) is a popular machine learning model which can be ap- 

lied flexibly to various types of time series with a high com- 

utational cost. VAR [2] extends the autoregressive (AR) model 

o multivariate time series, thus it cannot integrate the relations 

mong time series variables. Many deep learning models, like LST- 

et [3] and MLCNN [4] , consider the long-term dependency and 

hort-term variance of time series, while they cannot explicitly 

odel the pairwise dependencies among variables. Recently, re- 

earches found it promising to model multivariate time series us- 

ng graph neural networks [5–7] . Time series variables can be con- 

idered as nodes in the graph while the interrelations among them 

s edges. The information of MTS is stored in this graph struc- 

ure and is then processed by the following graph neural networks. 

owever, TEGNN [5] , MTGNN [6] can only reveal one type of rela- 

ion, lacking the ability to model both static and dynamic relations 

n time series. The classical machine learning methods and men- 

ioned deep learning methods can not fully explore the implicit 

elations among time series. 

In this work, a novel framework, termed M ultivariate T ime 

eries Forecasting with Het erogeneous G raph N eural N etwork 

MTHetGNN) is proposed and applied for the MTS forecasting task. 

THetGNN embeds each relation or interdependency into each 

raph structure and fuses all graph structures with temporal fea- 

ures. The relation embedding module considers both static, prior, 

nd dynamic, latent relations among variables, characterizing the 

lobal relations (such as similarity and causality) and dynamic lo- 

al relations among time series, respectively. In addition, convolu- 

ion neural networks (CNN) are used for temporal feature extrac- 

ion. Finally, heterogeneous graph neural networks take the output 

f the former modules and tackle the complex structural embed- 

ing of graph structure generated by MTS for the forecasting task. 

hus our major contributions are: 

• We first propose a heterogeneous graph network-based frame- 

work that is compatible with taking full advantage of rich rela- 

tions among variables of MTS. 
• We construct a relation embedding module to explore the rela- 

tions among time series in both dynamic and static approaches. 
• We conduct extensive experiments on MTS benchmark datasets. 

The experimental results validate that the performance of the 

proposed method is better than state-of-the-art models. 

. Related work 

.1. Multivariate time series forecasting 

So far, there have been many deep learning models proposed 

n time series forecasting. They use classic neural network struc- 

ures to extract feature of time series, such as recurrent neural net- 

ork (RNN) [8] . On the basis of these units, scholars have designed 

any improved frameworks to make them better adapted to time 

eries forecasting tasks. Lai et al. propose the LSTNet framework 

3] , which uses CNN and RNN-skip component to capture the long- 

erm and short-term patterns of MTS, respectively. Cheng et al. 

9] build a MLCNN framework based on LSTM and CNN for fusing 

ear and distant future visions. To deal with the limitations of RNN 

nd temporal convolution networks (TCNs), Cirstea et al. [10] pro- 

ose a framework EnhanceNet to capture both distinct temporal 

ynamics and dynamic entity correlations. 

.2. Graph neural network 

Nowadays, neural networks have been employed for represent- 

ng graph structured data [11,12] , such as social networks and 

nowledge bases. Originated from Graph Signal Processing [13] , 

lassical convolutions are extended to spectral domain, which is 
152 
pace and time consuming. Further research [14] approximate the 

pectral convolution using K -hops polynomials, reducing the time 

omplexity effectively. Finally, GCN [15] , a scalable approach chose 

he convolutional architecture via a localized approximation with 

hebyshef Polynomial, which is an efficient variant and can oper- 

te on graphs directly. However, these methods can only imple- 

ent on undirected graphs. Previously in form of recurrent neural 

etworks, Graph Neural Networks (GNNs) are proposed to operate 

n directed graphs. 

.3. Heterogeneous network embedding 

Conventional methods for dealing with heterogeneous networks 

sually start with the extraction of typed structural features, aim- 

ng to pursue meaningful vector representations for each node for 

ownstream applications [16] . However, this task needs to consider 

tructural information composed of multiple types of nodes and 

dges, which is challenging. Many methods of dealing with het- 

rogeneous networks involve the concept of meta-structure [17] . 

or example, metapath2vec [18] uses a path composed of nodes 

btained from random walks guided by metapaths, and consid- 

rs heterogeneous semantic information to model the context 

f nodes. NSHE [19] proposed some delicate designs, e.g., net- 

ork schema sampling and multi-task learning, which preserves a 

igh-order structure in heterogeneous networks and alleviates the 

eta-path selection dilemma in meta-path-guided heterogeneous 

etwork embeddings. 

The heterogeneity and rich semantic information bring signif- 

cant challenges for designing heterogeneous graph neural net- 

orks. At the same time, the attention mechanism shows ex- 

iting advancements in deep learning. On this basis, some re- 

earchers [20] have applied the attention mechanism to het- 

rogeneous graphs, showing excellent results. For example, HAN 

21] uses metapath to model higher-order similarities (not directly 

sing first-order neighbors), and uses the attention mechanism 

o learn different weights for different neighbors. HGAT [22] use 

 dual-level attention mechanism, including node-level and type- 

evel attention. Specifically, the former aims to learn the impor- 

ance of nodes and their neighbors based on meta-paths, while the 

atter can learn the importance of different meta-paths. The dual- 

evel attention mechanism can fully consider the rich information 

n heterogeneous graphs. Many attention variants in heterogeneous 

etworks were also proposed. For instance, [23] proposed a new 

eterogeneous graph attention network based on high-order sym- 

etric relations (SR-HGAT). SR-HGAT considers the characteristics 

f nodes and high-order relations simultaneously and uses an ag- 

regator based on a two-layer attention mechanism to capture ba- 

ic semantics effectively. And [24] used a relation-wise Graph At- 

ention Network with a Relation Attention Module (RAM) to pre- 

icting polypharmacy side effects. 

. The framework 

.1. Task formulation 

In this work, we explore the task of multivariate time se- 

ies forecasting. Formally, given a time series X i = { x i 1 , x i 2 , . . . , x iT } ,
here x it ∈ R 

n is the observation with n variables at time stamp 

from the i th sample. T is the number of time stamps. The task 

s to predict the future value x t+ h where h denotes the horizon 

head of the current time stamp. Considering all samples X = 

 X 1 , X 2 , . . . , X s } where s is the number of samples, and the ground

ruth forecasting value Y = { Y 1 , Y 2 , . . . , Y s } , we aims to model the

apping from X to Y . 
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Fig. 1. The general architecture of our model MTHetGNN, which contains three modules and they jointly learn in an end-to-end fashion. Each time series is converted into a 

node in the graph (the color of the time series is consistent with the color of the node). Temporal embedding module captures temporal features as node features. Relation 

embedding module captures static, prior and dynamic, latent spatial relations among variables. The “From” and “To” in the figure indicate that the nodes’ relations are 

updated from the state at the previous moment to the state at this moment. Heterogeneous graph embedding module exploits and fuses rich spatial patterns with temporal 

features for better forecasting. 
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.2. Model architecture 

We first narrate our proposed model MTHetGNN, i.e., 

 ultivariate T ime Series Forecasting via Het erogenous G raph 

 eural N etworks in detail, which is a framework for modeling 

ultivariate time series from a graph perspective with compat- 

ble modules. An overview of MTHetGNN is illustrated in Fig. 1 . 

THetGNN contains three components: Temporal Embedding Mod- 

le, Relation Embedding Module and Heterogeneous Graph Embedding 

odule . To capture temporal features from time series, we adopt 

NN with multi receptive fields in temporal embedding module, 

hich could be replaced by methods like RNN and its variants. 

he relation embedding module captures different internal static 

nd dynamic relations among variables in MTS. Taking the above 

wo modules’ output, heterogeneous graph embedding models 

an exploit rich spatial dependencies in graph structures to model 

eterogeneity in time series. The three modules jointly learn in an 

nd-to-end fashion to exploit and fuse priori information, dynamic 

atent relations and temporal features. 

.3. Temporal embedding module 

This module aims to capture temporal features by applying 

ultiple CNN filters. As shown in Fig. 1 , CNN filters with differ- 

nt receptive fields are applied on multivariate time series, thus 

eatures under different periods are extracted from raw signals. 

ollow the concept of inception suggested in Szegedy et al. [25] , 

e use p CNN filters with kernel sizes (1 × k i )(i = 1 , 2 , 3 , . . . , p)

o scan through input time series x to capture features at multi- 

le time scales. Here set of convolution filters with kernel sizes of 

1 × 3 , 1 × 5 , 1 × 7] are used to capture features at multiple time

cales. 

.4. Relation embedding module 

The relation embedding module learns graph adjacency matrix 

o model the internal relations among time series. 

We model implicit relations in MTS variables using both static 

nd dynamic strategies. From the static perspective, we use cor- 
153 
elation coefficient and transfer entropy to model static linear re- 

ationships and implicit causality among variables. From the dy- 

amic perspective, we adopt dynamic graph learning concept and 

earn the graph structure adaptively, modeling time-varying graph 

tructure. By using the above three strategies, varies adjacency ma- 

rices are generated and then fed into heterogeneous graph neural 

etworks to interpret the relations between graph nodes in both 

tatic and dynamic way. 

Recall that for all samples X = { X 1 , X 2 , . . . , X s } , the similarity ad-

acency matrix A 

sim ∈ R 

n ×n is generated by: 

 

sim = Similarity (X ) , (1) 

here Similarity is a distance metric which measures the pairwise 

imilarity scores between time series. Existed work to measure dis- 

ance include Euclidean Distance, Landmark Similarity and Dynamic 

ime Warping (DTW) , etc. Here we adopt correlation and coefficient 

o measure the global correlation among time series, offering a 

riori knowledge of overal linear relation. Thus element in A 

sim is 

enerated by: 

 

sim 

i j = 

Cov (X i , X j ) √ 

D (X i ) 
√ 

D (X j ) 
, (2) 

here Cov (X i , X j ) is the covariance between X i and X j , D (X i ) and

 (X j ) is the variance of time series X i and X j respectively. 

The causality adjacency matrix A 

cas ∈ R 

n ×n is generated by: 

 

cas = Causality (X ) , (3) 

here Causality is a metric to measure causality between time 

eries. Various effort s have been made to measure causal infer- 

nce among variables, such as Granger, etc. Here we use Trans- 

er Entropy (TE) to process non-stationary time series, a pseudo- 

egression relationship will be produced in which pairwise time 

eries be considered causal if they have an overall trend caused by 

ommon factors. The causality mentioned here is not strict, but the 

alue is helpful for predicting. Given graph variables X and Y , the 

ransfer entropy of variable A to B is defined as: 

 B → A = H(A t+1 | A t ) − H(A t+1 | A t , B t ) , (4) 
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2 http://pems.dot.ca.gov 
3 http://www.nrel.gov/grid/solar-power-data.html 
n which the concept of conditional entropy is used. Let m t 

epresent the value of variable m at time t , and m 

(k ) 
t = 

 m t , m t−1 , . . . , m t−k +1 ] . H(M t+1 | M t ) is the conditional entropy rep-

esenting the information amount of M t+1 under the condition that 

he variable M t is known: 

(M t+1 | M t ) = 

∑ 

p 
(
m t+1 , m 

(k ) 
t 

)
log 2 p 

(
m t+1 | m 

(k ) 
t 

)
. (5) 

y calculate transfer entropy between time series, the element in 

ausality adjacency matrix A 

cas is calculated as: 

 

cas 
i j = T X i → X j − T X j → X i . (6) 

The third strategy adopts the concept of dynamic evolving net- 

orks [26] . In a certain period of time, the time series persist to 

stablish a relatively stable graph network, and node properties 

ike node degree can be updated in training process. We propose a 

ynamic relation embedding strategy, which learns the adjacency 

atrix A 

DA ∈ R 

n ×n adaptively to model latent relations in the given 

ime series sample X i , denoted as: 

 

dy = Ev olv e (X i ) . (7) 

Given the input time series X k = x 1 , x 2 , . . . , x n ∈ R 

n ×T fr om the 

 th sample with length T , where x i , x j denote the i th , j th time se-

ies. We first calculate the distance matrix D between sampled 

ime series: 

 i j = 

exp(−σ (distance (x i , x j ))) ∑ n 
p=0 σ (exp(−σ (distance (x i , x p ))) 

, (8) 

here distance denotes the distance metric. The dynamic adja- 

ency matrix A 

dy ∈ R 

n ×n can be calculated as: 

 

dy = σ (DW ) . (9) 

 is a learnable parameter and σ is an activation function. 

Normalization is applied to the output of each strategy respec- 

ively to form three normalized adjacency matrix. What’s more, to 

mprove training efficiency, reduce the effect of noise, amplify the 

ffective relations and make the model more robust, threshold is 

et to make all the adjacency matrices sparse: 

 

r 
i j = 

{
A 

r 
i j 

A 

r 
i j 

> = threshold 

0 A 

r 
i j 

< threshold 
(10) 

.5. Heterogeneous graph embedding module 

This module could be viewed as a graph based aggregation 

ethod, which fuses temporal features and spatial relations be- 

ween time series to get forecasting results. 

Our model is primarily motivated by rGCNs [27] which learns 

n aggregation function that is representation-invariant and can 

perate on large-scale relational data. We adopt the idea of fus- 

ng node embeddings of each heterogeneous graph with attention 

echanism. We propose the following propagation function: 

 

(l+1) = σ

(
H 

(l) W 

l 
0 + 

∑ 

r∈R 

sof tmax (αr ) ̂  A r H 

(l) W 

(l) 
r 

)
, (11) 

here H 

(l) is the matrix of node embedding in the l th layer, H 

(0) =
; α(r) is the weight coefficient of each heterogeneous graph, and 

of tmax (αr ) = 

exp(αr ) ∑ | R | 
i =1 

exp(αi ) 
. W 

(l) 
o and W 

(l) 
r are layer-specific weight 

atrix. σ is a nonlinear activation function, usually being Relu . In- 

pired by scaled dot-product attention mechanism [28] , we extend 

he use of the dot-product operation to compute the attention co- 

fficients between heterogeneous graph neural network. 
154 
. Objective function 

L 2 loss is used in many forecasting tasks: 

inimize (L 2 ) = 

1 

k 

k ∑ 

i 

n ∑ 

j 

(y i j − ˆ y i j ) 
2 , (12) 

here k is the training size and n is the variables in time series. ŷ

s the prediction and y is the ground truth. Researchers have found 

hat objective function using L 1 loss has a stable gradient for dif- 

erent inputs, which can reduce the impact of outliers while avoid- 

ng gradient explosions: 

inimize (L 1 ) = 

1 

k 

k ∑ 

i 

n ∑ 

j 

| y i j − ˆ y i j | (13) 

We use the Adam optimizer and decide which objective func- 

ion to use by the performance on the validation set. 

. Experiments 

We conduct experiments on MTHetGNN model on three bench- 

ark datasets and compare the performance of MTHetGNN with 

ight baseline methods for multivariate time series forecasting 

asks. 

.1. Data 

We use three benchmark datasets which are commonly used in 

TS forecasting. The details are as following: 

• Exchange-Rate: The exchange rate data from eight countries, 

including UK, Japan, New Zealand, Canada, Switzerland, Singa- 

pore, Australia and China, ranging from 1990 to 2016. 
• Traffic 2 : The traffic highway occupancy rates measured by 862 

sensors in San Francisco from 2015 to 2016 by California De- 

partment of Transportation. 
• Solar-Energy 3 : Continuous collected Solar energy data from the 

National Renewable Energy Laboratory, which contains the solar 

energy output collected from 137 photovoltaic power plants in 

Alabama in 2007. 

.2. Methods for comparison 

We evaluate the performance of MTHetGNN with other nine 

aseline models on MTS forecasting task. The overview of baseline 

ethods are summarized as bellow: 

• VAR-MLP [2] : A machine learning model, which is the combina- 

tion of Multilayer Perception (MLP) and Autoregressive model. 
• RNN-GRU [29] : A Recurrent Neural Network adopting GRU cell. 
• LSTNet [3] : A deep learning method, which uses Convolution 

Neural Network and Recurrent Neural Network to discover both 

short and long term patterns for time series. 
• DCRNN [30] : A diffusion convolutional recurrent neural net- 

work, which combines graph convolution networks with recur- 

rent neural networks in an encoder-decoder manner. 
• Graph WaveNet [31] : A spatial-temporal graph convolutional 

network, which integrates diffusion graph convolutions with 1D 

dilated convolutions. 
• EnhanceNet [10] : An enhanced framework, which integrates 

Distinct Filter Generation Network and Dynamic Adjacency Ma- 

trix Generation Network to boost the forecasting accuracy. 

http://pems.dot.ca.gov
http://www.nrel.gov/grid/solar-power-data.html
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Table 1 

MTS forecasting results measured by RSE/RAE/CORR score over three datasets. The best performance results are bolded. 

Dataset Exchange-rate Solar Traffic 

horizon horizon horizon horizon horizon horizon horizon horizon horizon horizon horizon horizon 

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 

VAR RSE 0.0186 0.0262 0.0370 0.0505 0.1932 0.2721 0.4307 0.8216 0.5513 0.6155 0.6240 0.6107 

RAE 0.0141 0.0208 0.0299 0.0427 0.0995 0.1484 0.2372 0.4810 0.3909 0.4066 0.4177 0.4032 

CORR 0.9674 0.9590 0.9407 0.9085 0.9819 0.9544 0.9010 0.7723 0.8213 0.7826 0.7750 0.7858 

RNN-GRU RSE 0.0200 0.0262 0.0366 0.0527 0.1909 0.2686 0.4270 0.4938 0.5200 0.5201 0.5320 0.5428 

RAE 0.0157 0.0209 0.0298 0.0442 0.0946 0.1432 0.2302 0.2849 0.3625 0.3708 0.3669 0.3844 

CORR 0.9772 0.9688 0.9534 0.9272 0.9832 0.9660 0.9112 0.8808 0.8436 0.8459 0.8316 0.8232 

LSTNET RSE 0.0216 0.0277 0.0359 0.0482 0.1940 0.2755 0.4332 0.4901 0.4769 0.4890 0.5110 0.5037 

RAE 0.0171 0.0226 0.0295 0.0404 0.0999 0.1510 0.2413 0.2997 0.3161 0.3291 0.3435 0.3441 

CORR 0.9749 0.9678 0.9534 0.9353 0.9825 0.9633 0.9065 0.8673 0.8730 0.8657 0.8534 0.8537 

DCRNN RSE 0.0197 0.0258 0.0355 0.0485 0.1875 0.2611 0.3661 0.4780 0.4880 0.4957 0.5078 0.5125 

RAE 0.0159 0.0215 0.0291 0.0387 0.0965 0.1475 0.1891 0.2775 0.2938 0.3037 0.3219 0.3395 

CORR 0.9767 0.9699 0.9540 0.9350 0.9817 0.9618 0.9437 0.8611 0.8659 0.8518 0.8398 0.8267 

Graph WaveNet RSE 0.0189 0.0249 0.0337 0.0457 0.1788 0.2548 0.3315 0.4231 0.4571 0.4538 0.4829 0.5007 

RAE 0.0151 0.0198 0.0279 0.0371 0.0873 0.1257 0.1715 0.2485 0.2755 0.2895 0.3018 0.3111 

CORR 0.9787 0.9715 0.9548 0.9385 0.9839 0.9698 0.9508 0.8798 0.8845 0.8607 0.8585 0.8436 

EnhanceNet RSE 0.0181 0.0244 0.0342 0.0461 0.1791 0.2431 0.3275 0.4028 0.4321 0.4497 0.4751 0.4877 

RAE 0.0144 0.0193 0.0281 0.0384 0.0855 0.1221 0.1689 0.2444 0.2587 0.2699 0.2913 0.3018 

CORR 0.9798 0.9733 0.9582 0.9388 0.9842 0.9655 0.9533 0.8910 0.8891 0.8714 0.8641 0.8569 

MLCNN RSE 0.0172 0.0449 0.0519 0.0438 0.1794 0.2983 0.3673 0.5191 0.4924 0.4992 0.5214 0.5353 

RAE 0.0129 0.0334 0.0422 0.0375 0.0844 0.1342 0.1873 0.3131 0.3376 0.3243 0.3766 0.3825 

CORR 0.9780 0.9610 0.9550 0.9407 0.9814 0.9642 0.9210 0.8513 0.8629 0.8416 0.8320 0.8255 

MTGNN RSE 0.0194 0.0253 0.0345 0.0447 0.1767 0.2342 0.3088 0.4352 0.4178 0.4774 0.4461 0.4535 

RAE 0.0156 0.0206 0.0283 0.0376 0.0837 0.1171 0.1627 0.2563 0.2435 0.2670 0.2739 0.2651 

CORR 0.9782 0.9711 0.9564 0.9370 0.9852 0.9727 0.9511 0.8931 0.8960 0.8665 0.8794 0.8810 

TEGNN RSE 0.0178 0.0245 0.0363 0.0449 0.1824 0.2612 0.3289 0.4733 0.4421 0.4433 0.4508 0.4692 

RAE 0.0135 0.0195 0.0306 0.0388 0.0851 0.1312 0.1766 0.2821 0.2651 0.2616 0.2740 0.2855 

CORR 0.9815 0.9732 0.9566 0.9352 0.9847 0.9676 0.9379 0.8854 0.8853 0.8820 0.8743 0.8671 

MTHetGNN RSE 0.0173 0.0238 0.0327 0.0430 0.1668 0.2175 0.2872 0.3862 0.4142 0.4303 0.4376 0.4500 

RAE 0.0132 0.0190 0.0266 0.0361 0.0788 0.1111 0.1514 0.2217 0.2349 0.2490 0.2592 0.2661 

CORR 0.9824 0.9746 0.9604 0.9415 0.9872 0.9772 0.9583 0.9210 0.8975 0.8887 0.8828 0.8776 
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• MLCNN [4] : A deep neural network which fuses forecasting in- 

formation of different future time. 
• MTGNN [6] : A graph neural network designed for multivariate 

time series forecasting. 
• TEGNN [5] : A novel deep learning framework to tackle forecast- 

ing problem of graph structure generated by MTS considering 

causal relevancy. 

.3. Metrics 

Conventional evaluation metrics are used to evaluate all meth- 

ds: Relative Squared Error (RSE), Relative Absolute Error (RAE) , and 

mpirical Correlation Coefficient (CORR) . For RSE and RAE , lower 

alue is better, while for CORR , higher value is better. 

.4. Experimental details 

On three benchmark datasets, data are split into training set, 

alidation set and testing set in a ratio of 6 : 2 : 2 , then we use

he model with the best performance based on RSE, RAE and CORR 

etrics on validation set for testing. We conduct grid search strat- 

gy over adjustable hyper-parameters for all methods. The window 

ize T is set to 32 for all methods. For RNN, the hidden RNN layer

s chosen from { 10 , 20 , 50 , 100 } , the dropout rate is chosen from

 0 . 1 , 0 . 2 , 0 . 3 } . For LSTNet, the hidden CNN and RNN layer is cho-

en from { 20 , 50 , 100 , 200 } , the length of recurrent-skip is set to

4. For DCRNN, both encoder and decoder contain two recurrent 

ayers and each layer has 64 units. For Graph WaveNet, to cover 

he input sequence length (or the window size 32), we use 16 lay- 

rs of Graph WaveNet with a repeat sequence of dilation factors 

, 2, 4, 8. For EnhanceNet, we use enhanced RNN to extract fea- 

ure. The memory dimension and the RNN units are all set to 16. 
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or MTGNN, the mix-hop propagation depth is set to 2, the activa- 

ion saturation rate of graph learning layer is set to 3. For TEGNN 

nd MTHetGNN, the hidden graph convolutional networks is cho- 

en from { 5 , 10 , 15 , . . . , 100 } . 

.5. Effectiveness 

Table 1 summarizes the evaluation results of MTHetGNN 

nd other baseline methods on three benchmark datasets un- 

er different settings. Following the settings of LSTNet [3] , 

e test the model performance on forecasting future values 

 X t+3 , X t+6 , X t+12 , X t+24 } , which means future value from 3 to

4 days over the Exchange-Rate data, 30 to 240 min over the Solar- 

nergy data, and 3 to 24 h over the Traffic data, s thus horizon are

et to { 3 , 6 , 12 , 24 } for three benchmark datasets respectively. As

hown in Table 1 , the best results under 4 different horizon with 

 evaluation metrics are set bold. On the Exchange-Rate dataset, 

hen the horizon is 3, the performance of MLCNN is a little bit 

etter than MTHetGNN; on the Traffic dataset, when the horizon is 

4, the performance of MTGNN is slightly better than MTHetGNN. 

n other cases, MTHetGNN has better results under all metrics than 

ethods such as DCRNN, Graph WaveNet and their enhanced ver- 

ion EnhanceNet. 

TEGNN, MTGNN and MTHetGNN use graph structure to model 

ime series, the strong representing ability of graph neural net- 

orks make these three models behave better than other base- 

ine methods. It is noteworthy that MTHetGNN outperforms the 

trong graph-based baseline TEGNN, especially on datasets con- 

aining plenty variables, indicating the strong information aggre- 

ation capabilities heterogeneous graph networks shows under the 

ame neural network depth. This is partly because TEGNN model 

aptures the causality of multivariate time series while MTHet- 
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Fig. 2. Running time for testing process for all methods on Exchange-Rate dataset when horizon is 3. 

Fig. 3. Performance of MTHetGNN and four variants on Exchange-Rate dataset after training 100 epochs. The experiment settings are the same for these methods. 
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NN focus on heterogeneity. Measuring transfer entropy on the 

hole time series makes the measurement of causality more accu- 

ate. However, macroscopic observations will filter out the fluctua- 

ions in a single time series segment, thus transfer entropy matrix 

annot fully represent the relationship between variables in dif- 

erent time segments. Considering this, MTHetGNN not only takes 

he static relations among time series into account, but considers 

he dynamic correlations shown in a shorter time segment, fully 

xploiting the heterogeneity of time series. Detailed analysis are 

hown in following sections. 
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.6. Efficiency 

MTHetGNN has three graph embedding paths, which increases 

he complexity of the model to a certain extent. But the node fea- 

ure matrix generated by temporal embedding module is shared by 

ll the three paths. And the adjacency matrix A 

T E and A 

CO can be 

alculated in the offline modeling stage, which has little effect on 

he model complexity. In order to verify the time complexity of the 

THetGNN model, we record the testing time of the MTHetGNN 

odel and other methods on the Exchange-Rate dataset. As shown 
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Fig. 4. Performance of MTHetGNN on Solar dataset when horizon is 3. The hidden size of GNN layers is varying while other hyper-parameters remain the same. 
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n Fig. 2 , the MTHetGNN model mines time series multi relations 

hile having relatively high computing efficiency. Since MTGNN 

e-extracts features using dilated convolution during each propa- 

ation, while other methods in the figure only extract once, the 

unning time of MTGNN is significantly longer than other meth- 

ds. 

.7. Ablation study 

In this subsection, we conduct ablation studies on Exchange- 

ate dataset to understand the contributions of heterogeneous 

raph network in MTHetGNN. There are two main types of set- 

ings, type1, 2, 3 removes the heterogeneous graph part and use 

ne relation extracting way respectively, type4 replaces the atten- 

ion part with the average operation. The detailed setting of each 

ariant model is as followed: 

• type1: Only the Transfer Entropy matrix is used to integrate 

neighbor information in each layer. 
• type2: Only the Correlation Coefficient matrix is used to inte- 

grate neighbor information in each layer. 
• type3: Only the Dynamic matrix is used to integrate neighbor 

information in each layer. 
• type4: The MTHetGNN model without attention component, in 

which the adjacency matrix obtained by three strategies are av- 

eraged to a single matrix. 

The results are shown in Fig. 3 . We notice that MTHetGNN 

an model the time series trend more precisely than each vari- 

nt model, which indicates the effectiveness of both heterogeneous 

etwork embedding and attention mechanism in modeling MTS. As 

s shown, using heterogeneous graph instead of each relation graph 

aises the rse metric of 5 . 1% , 7 . 2% , 4 . 5% respectively for type1, 2, 3.

t is not surprising given the motivation of using heterogeneous 

raph. Type1, 2, 3 each only considers relation of the time series 

n one perspective, while MTHetGNN adopts the concept of hetero- 

eneous graph and fuses the relations in both static and dynamic 

ay. The difference in results between MTHetGNN and type4 in- 

icates the effectiveness of attention mechanism. By adopting at- 

ention mechanism, MTHetGNN can treat each relation graph with 
157 
ifferent weight, in accordance with the importance of each type 

f relation altered in training process. 

.8. Parameter analysis 

Meanwhile, we change the network parameters of the hetero- 

eneous graph network and test the performance of the MTHet- 

NN model under different parameter settings on Solar dataset. 

ig. 4 shows that the MTHetGNN model does not rely on specific 

arameters, being relatively not sensitive to parameter changes, 

howing its effectiveness and stability. 

. Conclusion 

In this paper, we propose a novel heterogeneous graph embed- 

ing based framework (MTHetGNN) for MTS forecasting. MTHet- 

NN can exploit rich spatial relation information and temporal fea- 

ures generated by MTS. Experiments on three real-world datasets 

how that our model outperforms other baselines in terms of three 

etrics. 
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