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INTRODUCTION: Gene regulatory elements play
amajor role in human brain development and
disease etiology. Numerous potential gene reg-
ulatory elements and disease-related genetic
variants in the developing brain have been
identified through experiments and compu-
tational predictions. However, functionally char-
acterizing these elements and studying how
DNA nucleotide variants within them lead to
disease are challenging as a result of their cell
type–specific activity, our limited understanding
of how nucleotide changes impact gene regu-
lation, and the limitations of high-throughput
functional assays. Lentivirus-based massively
parallel reporter assays (lentiMPRAs) can over-
come these limitations, providing the ability to
test thousands of sequences and variants for

their regulatory activity inhard-to-transfect cells,
such as neurons and cerebral organoids. With
this much quantitative activity data it is pos-
sible to train machine learning models to pre-
dict functional and cell type–specific regulatory
elements and to perform massive in silico ex-
periments that pinpoint nucleotide variants
that alter enhancer activity.

RATIONALE:Wecombined lentiMPRAanddeep
learning to evaluate over 100,000 candidate reg-
ulatory elements and variants in mid-gestation
human cortical cells and cerebral organoids.
These include sequences with accessible chro-
matin in specific cell types of the developing
brain and psychiatric disorder–associated var-
iants. Comparing results in primary cells and

cerebral organoids enabled us to evaluate whether
organoids can be effectively utilized as an in vitro
model forMPRA studies. Training a sequence-
to-activity neural network model on lentiMPRA
data enabled it to learn the regulatory grammar
encoded in our experimental results, allowing us
to predict the effects of nucleotide changes on
enhancer function.

RESULTS:Using lentiMPRA,we identified 46,802
sequences that exhibited enhancer activity. In
addition, we found 164 variants associatedwith
psychiatric disorders showing differential en-
hancer activity between alleles in human cor-
tical cells. Moreover, lentiMPRA experiments
testing the same sequences in cerebral organo-
ids showed highly consistent activity between
both contexts, with some differences attrib-
utable to distinct cellular environments. We
trained a deep learning model that predicts
lentiMPRA activity with state-of-the-art accu-
racy. Applying an explainable artificial intelli-
gence technique called in silicomutagenesis to
the model allowed us to learn sequence deter-
minants of regulatory activity in human brain
development, categorize transcription factors
as repressors versus activators in this context,
and predict nucleotide changes with large ef-
fects on regulatory activity.

CONCLUSION: We generated a large-scale cat-
alog of sequences that are active gene regulatory
elements in mid-gestation human cortical cells
and cerebral organoids that could have impor-
tant roles in human brain development. Char-
acterization of regulatory variants in regions
associated with psychiatric disorders identi-
fied 164 variants that alter gene regulatory
activity, providing insights into how gene reg-
ulatory variants could lead to phenotypic effects.
In addition, we demonstrated the potential of
brain organoids as a viable model to study
gene regulation during early brain develop-
ment. The high accuracy of our sequence-
to-activity model allowed us to predict the
regulatory effects of numerous additional
variants not tested in our assays, including
sites that do not commonly vary across healthy
individuals. In summary, this work increases
our understanding of the regulatory code dur-
ing human brain development and generates
tools that can predict how regulatory elements
are perturbed by nucleotide changes.▪
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Massively parallel characterization and prediction of gene regulatory activity in the developing brain.
We performed lentiMPRA to test the regulatory potential of 102,767 sequences in primary cortical cells
and cerebral organoids. This dataset allowed the development of computational models that predict
regulatory activity from sequence.
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Nucleotide changes in gene regulatory elements are important determinants of neuronal development
and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation
cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin
regions, including thousands of sequences with cell type–specific accessibility and variants associated
with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and
164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells,
suggesting that organoids provide an adequate model for the developing cortex. Using deep learning
we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a
comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.

P
sychiatric disorders affect nearly one in
five adolescents worldwide (1) and have
a strong genetic etiology (2). Studies pro-
filing gene expression across distinct
anatomical regions found enrichment

of psychiatric disorder–associated genes in
developmental neurogenesis in the marginal
zone and deep cortical layer neurons (2–6).
For example, most autism spectrum disorder
(ASD) risk genes regulate genes involved in
neuronal communication during early brain

development (5). Decoding the genetic causes
of psychiatric disorders requires deep knowl-
edge of gene regulatory mechanisms in the
developing brain. In the past decade, hundreds
of psychiatric disorder–associated genetic risk
loci have been identified by individual labs and
large consortia (7–9). A major portion of these
loci reside in noncoding regions of the genome,
likely within gene regulatory elements, and
contain highly correlated variants due to link-
age disequilibrium (LD),making them challeng-
ing to interpret and functionally characterize.
Gene regulatory elements, such as enhancers

and promoters, regulate lineage- and region-
specific transcription in the developing human
cortex (10). Promoters are located adjacent to
their target genes whereas enhancers can be
located at distal locations from the gene(s)
that they regulate. In addition, because of their
cell-type specificity and spatiotemporal dynamic
activity, enhancers are difficult to identify.
Single-cell assay for transposase-accessible chro-
matin with sequencing (scATAC-seq) at differ-
ent developmental stages of the human cortex
enabled the identification of different cell pop-
ulations and their candidate regulatory ele-
ments (11, 12). However, these studies are
descriptive and do not provide a functional
readout that can test enhancer activity and the
effects of variants. Massively parallel reporter as-
says (MPRAs) allow quantification of enhancer
activity in a high-throughput manner, including
different alleles in a single experiment (13–16).
Machine learning can leverage MPRAs and
other genomic data to predict enhancers and
their quantitative activity (17–22). Sequence-
based deep learningmodels (23, 24) have been
deployed at scale to screen variants prior to
experimental validation and to design cell type–

specific enhancers. These strategies shed light
on the sequence motifs and upstream regula-
tors that are important for regulating gene ex-
pression across different cell types and species.
We used deep learning and a lentivirus-based

MPRA (lentiMPRA) to characterize the en-
hancer activity of 102,767 sequences in pri-
mary humanmid-gestation cortical cells and
10-week cerebral organoids, each tested across
3 to 5 replicates. We discovered 46,802 func-
tional enhancers and 164 variants with allelic
differences in enhancer activity regulating
known disorder-associated genes such as TBR1,
MARK2 (ASD), and NFKB2 (schizophrenia).
We observed comparable activity between or-
ganoids and primary cells, suggesting that
organoids provide an adequatemodel to study
the developing cortical regulatory landscape.
Using our lentiMPRA data, we trained a deep
learning model that predicts enhancer activity
from sequence with state-of-the-art accuracy,
enabling us to learn sequence determinants
and upstream regulators of human cortical
development. These findings provide a com-
prehensive catalog of functional cortical en-
hancers and variants that alter their activity,
improving our understanding of the molec-
ular basis of neurodevelopment.

Results
LentiMPRA library generation and analysis

To comprehensively characterize humanneuro-
developmental enhancers and their sequence
variants in the mid-gestation cortex, we de-
signed two lentiMPRA libraries (25) and tested
them in primary human cortical cells (Fig. 1A).
Because of the limited number of obtainable
human primary cells and lentivirus integra-
tions into these cells, each library was assayed
independently.
The differentially accessible (DA) library was

designed to characterize the regulatory poten-
tial of candidate cell type–specific enhancers.
It consisted of 51,495 sequences obtained pri-
marily from scATAC-seq DA peaks in the de-
veloping human brain (11). These DA peaks
were further selected based on their (i) over-
lap with H3K27ac peaks from bulk prefrontal
cortex tissue (26), microglia or non-microglia
cells (11) (n = 24,611, 53%); (ii) overlap with
H3K4me3 proximity ligation-assisted chro-
matin immunoprecipitation sequencing (PLAC-
seq) peaks from intermediate progenitor cells,
radial glia (RG), excitatory neurons (EN), or
interneurons (IN) (27) (n = 12,412, 26.8%); or
(iii) overlapwith promoter captureHi-C (PCHi-C)
from EN, hippocampal dentate gyrus (GE)–like
neurons, lower motor neurons and astrocytes
(28) (n = 13,712, 29.5%).
The variant library compared the reference

and the alternative alleles for 17,069 variants.
Thesewere selected frompseudo-bulked ATAC-
seq peaks (11) overlapping brain quantita-
tive trait loci (QTLs) (29–31). As the median
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enhancer-target distance was estimated at
62 kilobases (kb) (32), we further required that
expression QTL (eQTL; n = 14,021) and chro-
matin QTL (caQTL; n =149) be within 100 kb of
genes differentially expressed in schizophrenia,

autism, or bipolar disorder. To overcome the
systematic bias toward different types of var-
iants in genome-wide association studies
(GWAS) versus QTL studies (33), we also in-
cluded QTLs in LD blocks with GWAS single

nucleotide polymorphisms (SNPs) for various
psychiatric disorders (8, 34–41) (eQTL n =
2,882, caQTL n = 17).
To prioritize distal enhancers, promoter-

overlapping peaks were excluded from both

Fig. 1. Design and overall lentiMPRA results. (A) Experimental overview of
the two lentiMPRA libraries. The DA library contains 48,861 DA regions from
scATAC-seq in the developing human cortex that overlap either H3K27ac peaks
or PLAC-seq/PCHi-C loops. The number of DA candidates for each cell type is
illustrated in the bar plot. dlEN, deep layer excitatory neuron; ulEN, upper layer
excitatory neuron; IN-CGE, caudal ganglionic eminence–derived interneurons;
IN-MGE, medial ganglionic eminence–derived interneurons. The variant library
includes 17,069 brain QTLs that are within 100 kb of differentially expressed
cross-disorder neurodevelopmental genes or in linkage disequilibrium (LD) with
psychiatric disorder GWAS SNPs. The number of variants associated with each
disorder is shown in the upset plot (largest 22 intersections shown). SCZ,
schizophrenia; ASD, autism spectrum disorder; BD, bipolar disorder; CDG,
congenital disorders of glycosylation; AD, Alzheimer's disease; MD, major
depression; ADHD, attention-deficit/hyperactivity disorder; TS, Tourette
syndrome; OCD, obsessive-compulsive disorder. Both libraries were cloned into

a lentiMPRA vector and packaged into lentivirus and used to infect primary
cortical cells dissociated from GW18 tissues and human induced pluripotent cell
(hiPSC)-derived cerebral organoids. Following infection, DNA and RNA were
extracted and sequenced and an RNA/DNA barcode count ratio was calculated for
each candidate regulatory sequence (CRS) allowing the identification of active
DA regions and differentially active variants. (B) Correlation of log2(RNA/DNA)
between technical replicates in primary cortical cells for the DA and variant
library, respectively. (C) Pie charts showing the number of active and inactive
sequences for candidates, positive (+) and negative (−) controls in both libraries.
(D) Top enriched GO terms from the “biological process”, “ cellular component”,
and “molecular function” ontologies for nearest genes of the highest activity
sequences (both libraries combined). Closest genes of the lowest activity sequences
were used as the background set. The complete list of GO terms is available in
fig. S2B. (E) TF motif enrichment analysis for highest activity sequences (both
libraries). Red, neurodevelopmental TFs, Blue, USFs.
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libraries. Each library contained 143 positive
control sequences nominated from ATAC-seq
and ChIP-seq data in brain organoid models
(42) and used to define active sequences. The
variant library also included ~15,000 non-QTL
sequences with a range of expected activity
levels predicted from their epigenetic profiles.
We designed 270 base pair (bp) oligos, each
centered on the DA peak summit (DA library)
or variant (variant library), flanked by 15-bp
adapters on either side for library amplifica-
tion. A 31-bp minimal promoter and 15-bp ran-
dom barcode were placed downstream of each
synthesized oligo through PCR and cloned into
a lentiMPRA vector (Fig. 1A).
Each library was packaged into lentivirus

and used to infect gestational week-18 (GW-18)
human primary cortical cells following two
days in culture. The presence of major cortical
cell types was confirmed by immunocytochem-
istry before and after infection (fig. S1A) and
single-cell RNA-seq (fig. S1B). Utilizing single-
cell RNA-seq performed on infected cells, we
confirmed sufficient infection rates in most
cell types (fig. S1C). We performed three rep-
licates for the DA library and five replicates for
the variant library. Three days post infection,
whenmost of the nonintegrated virus degrades,
DNA and RNA were harvested and prepared
for sequencing. DNA sequencing revealed that
both libraries containedmore than 96% of the
designed oligos (DA library: 50,394 oligos; var-
iant library: 51,319 oligos), and each oligo had
an average of more than 50 unique barcode
associations (medianDA: 56, variant: 64). Over-
all, 97,762 sequences (95%) passed stringent
quality control (25).
Tomeasure enhancer activity, we quantified

depth-normalized barcode abundance in DNA
and RNA for each oligo and then calculated its
batch-corrected RNA/DNA ratio, observing suf-
ficient reproducibility (average Pearson corre-
lation between replicates, DA: 0.93, variant:
0.91; Fig. 1B). We next compared the activity
distributions of positive and negative controls
(fig. S2A). As expected, positive controls had
significantly higher ratios than negative con-
trols (DA: P = 1 × 10−3, variant: P = 8 × 10−5,
Wilcoxon test). Moreover, the distribution of
ratios for randomly scrambled controls was
highly comparable between libraries (median
DA: 0.997, median variant: 0.994).
To identify sequences capable of driving

gene expression, we defined active sequences
as those with RNA/DNA ratios above the me-
dian of positive controls in their respective
libraries (DA: 1.047, variant:1.068), conserv-
atively treating the remaining sequences as
inactive in bulk tissue. This definition was
highly concordant with MRPAnalyze modeling
(25, 43). Combining both libraries, we iden-
tified a total of 46,802 active sequences (Fig. 1C)
and 25,557 with activity above the 75th per-
centile of the positive controls. Comparedwith

inactive sequences, active sequences are sig-
nificantly more conserved (P = 5.8 × 10−28,
Wilcoxon test), and their target genes are ex-
pressed at higher levels during mid-gestation
(P = 6.4 × 10−6, Wilcoxon test; 23% of all
sequences mapped to target genes using PLAC-
seq data) (27). Comparing sequences with ac-
tivity in the lower versus upper quartile, we
found gene ontology (GO) enrichment for neu-
rodevelopmental terms, such as “nervous sys-
tem development” (Fig. 1D and fig. S2B), as
well as enrichment for transcription factor
binding sites (TFBS) for neurodevelopmental
gene families such as DLX, LHX, and SOX. We
also found enrichment for universal stripe
factors (USFs) includingEGR1,MAZ, andmem-
bers of the KLF/SP family (Fig. 1E). USFs co-
localize at most promoters and enhancers,
increasing chromatin accessibility and resi-
dence time for cofactors (44), suggesting that
they play a similar role with lentiMPRA re-
porter constructs integrated into the genome.
Together, these results indicate that our active
sequences have biological functions in brain
development.

Thousands of sequences with cell type–specific
chromatin accessibility are active enhancers

Of 46,370 DA sequences passing quality con-
trol, 24,218 (52%) were active enhancers in
primary cortical cells in our bulk lentiMPRA
(data S1), with the percentage active ranging
from 43 to 62% across sets of DA sequences
predicted to be cell type–specific based on their
scATAC-seq profiles (Fig. 2A).ManyTFBS show
positional enrichment within the scATAC-seq
DA sequenceswith activity in the upper versus
lower quartile (Fig. 2B). For example, active
sequences tend to have ATOH1, NEUROD2,
and TCF4 motifs upstream of the peak sum-
mit, whereas ASCL1 and SPI1 motifs are en-
riched downstream. Repressive sequences,
defined as 2784 DA sequences with an activity
ratio lower than the 10th percentile of nega-
tive controls, showed enrichment for the tran-
scriptional repressors ZEB1 and ZEB2 (fig. S2C
and data S1).
In almost all cell types, active DA sequences

are more conserved than inactive sequences
(Fig. 2C and table S1), consistent with prior
knowledge that neurodevelopmental enhancers
tend to exhibit strong conservation across ver-
tebrate evolution (45). Inhibitory neurons de-
rived from the ganglionic eminence exhibited
the largest differences in conservation scores
between active and inactive sequences, fitting
with the general transitory role of the gangli-
onic eminence in guiding neuronal migration
(46). To test whether active DAs had regu-
latory activities endogenously, we predicted
the target genes of each DA sequence using
PLAC-seq data (27) and calculated cell type–
matched expression using scRNA-seq data in
the developing human cortex (11). For many

neuronal subtypes, genes interacting with ac-
tive DAs showed higher expression compared
with genes interacting with inactive DAs. We
also found a higher number of TFBS in active
DAs specific to astrocyte/oligodendrocyte pre-
cursors (astro/oligo), RG, microglia, and endo-
thelial and mural cells (endo/mural) whereas
USF motifs were enriched in IN-CGE DAs and
the four glial and vascular cell types. These
results indicate that the activity of DA se-
quences in lentiMPRA is associatedwithmotif
content and target gene expression in the
matched cell type.
To verify the cell type–specific activity of ac-

tive DAs in our lentiMPRA, we selected 11 DA
peakswith highMPRAactivity for six different
cell types (table S2) and tested them individ-
ually for their enhancer function (Fig. 2D). We
infected tissues with the individual enhancer
reporter lentivirus and found that all candi-
dates showed GFP expression (fig. S3). Cell-
type specificity was inferred from GFP spatial
location, counterstaining with cell markers,
and morphology. We found three excitatory
neuron-specific DA sequences (EN-1, ulEN-2,
and dlEN-2) showing enhancer activity in the
expected cell type. A ulEN-specific DA region
(ulEN-2, chr5:89274678-89274948, hg38, Fig.
2E) drove GFP expression predominantly in
the upper areas of the cortical plate and largely
co-localized with SATB2, an upper layer ex-
citatory neuron marker. Using PLAC-seq data
(27), we found that this region has an EN-
specific interaction with the promoter ofMEF2C
and MEF2C-AS1, known ASD and SCZ genes
with EN-specific expression in the developing
cortex. The pan-excitatory neuron specific ac-
cessible region (EN-1, chr2:165141999-165142269,
hg38, Fig. 2F) showed higher GFP signal in the
cortical plate (CP) and subplate (SP) com-
paredwith the ventricular zone (VZ) and outer
subventricular zone, with most of the cells
positive for GFP and SATB2 located in the top
layer of the CP.
Not all sequences showed enhancer activity

within or unique to their predicted cell type.
Two regions (ulEN1 and dlEN1) showed GFP
expression outside the regions where the ex-
pected cell type is enriched. Candidate sequen-
ces specific to astro/oligo or RG showed GFP
signal around the VZ but also near the CP.
These GFP+ cells showed complex morphol-
ogies: some matched with the expected cell
type(s) whereas others did not (fig. S3). To
conclude, we independently validated the en-
hancer activities of 11 sequences with high
lentiMPRA activity, finding all of them to
drive GFP expression in cortical cells, with
three exhibiting cell type–specificity consistent
with scATAC-seq.
To further validate with an orthogonalmeth-

od, we performed luciferase reporter assays on
24 DA sequences with scATAC-seq chromatin
accessibility specific to either EN or microglia
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Fig. 2. Identification and validation of functional differentially accessible
regions in the developing cortex. (A) Upset plot showing the number of DA peaks
(active, blue; inactive, gray) for each cell type or combination of cell types.
(B) The highest activity DA sequences have positional motif enrichment for
neurodevelopmental TFs compared with the lowest activity sequences, exhibiting
significantly more motif matches slightly up- or downstream of the ATAC-seq
peak summit. (C) Active DA sequences have significantly higher means across
several attributes compared with inactive DA sequences (color scale is as follows:
Wilcoxon test false discovery rate (FDR) adjusted P-values, black indicates no data)
including evolutionary conservation (phyloP), expression of PLAC-seq linked target

genes in matched cell types, total number of strong motif matches (q-value < 0.01),
and total number of strong USF motif matches. A representative motif enriched
in active DA peaks for each cell type is shown on the right. Statistically significant
comparisons (q-value < 0.05) are indicated by a star. (D) Experimental strategy
for validating cell type specificity of active DA sequences. (E and F) Developing
human cortex slice cultures transduced with a GFP lentivirus reporter driven by a
ulEN-specific enhancer (chr5:89274678-89274948, hg38) (E) and a pan-excitatory
neuron specific enhancer (chr2:165141999-165142269, hg38) (F). Expression of
GFP (green) and SATB2 (red) was visualized through immunohistochemistry staining
and insets show colocalization of GFP+ along with SATB2+ cells in different layers.
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spanning a range of MPRA activity, in bulk
cortical cells, purified human excitatory neu-
rons, and microglia (fig. S4). We observed a
good agreement between luciferase andMPRA
in bulk cortical cells (Pearson correlation =
0.63, P = 0.001) and between bulk versus puri-
fied cells (Pearson correlation 0.90 and 0.84,
for EN and microglia, respectively). These re-
sults suggest that bulk reporter assays can
accurately capture the regulatory potential of
differentially accessible regions.

lentiMPRA identifies functional
regulatory variants

In the variant library, 15,335 variants had both
alleles passing quality control and 8029 showed
enhancer activity from at least one allele. Most
of these active variants had modest effects on
enhancer activity (median absolute log2 FC =
0.069) (Fig. 3A). At a 10% FDR in our limma
differential activity analysis, 164 out of 8029
variants (2.04%) showed significant allelic ef-
fects with the number of down-regulating and
up-regulating variants being similar (51% ver-
sus 49%, Fig. 3B and data S2). This is in line
with previous eQTL analyses which find that
~1% of single nucleotide changes are associ-
ated with marked changes in gene expression
(47). Among these 164 differentially active var-
iants (DAVs), 26 were in LD with GWAS SNPs
and 138 were within 100 kb of differentially
expressed disease genes, which is similar to
our expectations given the library design (17%
GWAS and 83% eQTL). Consistent with being
QTLs, DAVs are not enriched for low-frequency
variants (OR = 0.8, P = 0.34) nor do they have
elevated conservation (OR = 0.88, P = 0.52).
Separating DAVs based on scATAC-seq cell
type showed enrichment in astro/oligo (OR =
2.39, P = 0.14, Fig. 3C and fig. S5A).
Next, we compared our DAVs to prior studies.

A recentMPRA for dementia-associated variants
in human embryonic kidney cells (HEK293T)
(14) included 96 variants that were also in our
library. We found that 89 variants show no
significant allelic effect in either study and
7 altered enhancer activity in HEK293T cells
but not in our primary cortical cell data. This
difference could be due to the cell types and/or
the thresholds used to assign differential activ-
ity. Comparing our DAVs to eQTL data from
psychENCODE (29), we found that 55% of
DAVs (n = 77) had effects in the same direction
as the eQTL. The correlation between MPRA
and eQTL in non-DAVs (Pearson’s r = 0.008,
P = 0.366) was notably lower than that in
DAVs (Pearson’s r = 0.14, P = 0.102) (fig. S5B).
This corroborates that our lentiMPRA can
identify functional variants while underscor-
ing differences between reporter activity
and endogenous gene expression.
To decode the mechanisms through which

the 164 DAVs exhibit differential activity,
we predicted losses and gains of TFBS using

motifbreakR (48) (threshold = 1 × 10−5), iden-
tifying 34 DAVs (21%) in which the alternative
allele alters at least one motif (Fig. 3D). DAVs
showed significantly more disruption com-
pared with non-DAVs (OR = 1.49, P = 0.047,
Fisher’s exact test). We then analyzed whether
these disrupted TFs functionally or physi-
cally interact with each other using the STRING
database (49) and found a significant TF net-
work centering on SOX2 and STAT3 (PPI
enrichment P < 1 × 10−16, fig. S5C).
We predicted the putative target gene/s of

DAVs using chromatin interaction data in var-
ious brain cell types (27, 28, 50) and adult
brain eQTLs (29, 31) (Fig. 3A), finding 48DAVs
(29.3%) to have chromatin loops with gene
promoters and 8 of these (17%) to be eQTLs
for the interacting gene. As regulatory activ-
ities vary over development, target genes pre-
dicted using adult brain eQTLsmay not reflect
genes regulated in early brain development
and thus we prioritized target genes predicted
from chromatin interaction data. Many target
genes are known risk genes or within suscep-
tibility loci for psychiatric disorders and neu-
ral diseases. For example, variant rs2193495 is
located in a dlEN-specific DA region and po-
tentially regulates the expression of TBR1, a
haploinsufficient ASD-associated gene. The
rs2193495 alternative allele leads to reduced
MPRA activity, possibly due to the creation
of EOMES and MAZ binding sites (Fig. 3E).
Another down-regulating variant, rs2154984,
resides in a putative enhancer of MARK2, a
risk gene whose loss-of-function variants have
been associated with ASD (51) (Fig. 3F). This
variant decreases the binding affinity of MTF1
and ZNF148 while increasing the affinity of
PPARDandNR2F6 (Fig. 3F). Another example
includes SCZ-associated variant rs10786689
that is thought to regulate NFKB2 and SUFU.
This variant decreases enhancer activity, pos-
sibly due to the disruption of a SOX2 and/or
SOX4 TFBS (fig. S5D). Furthermore, ChIP-seq
in human neural progenitor cells (hNPCs) and
human embryonic stem cells (hESCs) shows
SOX2 binding in this region (52). Because both
genes are up-regulated in SCZ patients (53, 54),
our results suggest that the rs10786689 alter-
native allele could be protective. Finally, a
down-regulating variant rs73392121 resides
within a microglia DA region and is predicted
to regulate NPC1, a known cause of Niemann-
Pick disease type C. Mutations in this gene
lead to impaired cholesterol and lipid cellular
transport, includingmicrogliosis (55). Together,
these findings demonstrate that lentiMPRA
can nominate candidate causal variants for
known disease genes.
As a second strategy for linking DAVs to

psychiatric disorders, we focused on known
risk loci with multiple variants tested in our
lentiMPRA. For example, in the SCZ-associated
region 6p21.2 (56) (Fig. 3G), we tested 38 variants

and found 2 DAVs: rs6912602 and rs9368977.
rs6912602 is one of themost differentially active
variant in our lentiMPRA (3.3-fold decrease)
and is an eQTL associated with reduced ex-
pression ofPPIL1. Partial loss-of-function variants
in PPIL1 cause neurodegenerative pontocer-
ebellar hypoplasia in humans and mice (57).
rs9368977 increases enhancer activity and is
an eQTL for C6orf89. The alternative allele of
rs9368977 disrupts themotifs of USFs SP3 and
KLF4 (Fig. 3H). In the SCZ-associated locus
6p21.1 (56), we tested 48 variants and identi-
fied one DAV, rs1343025. The alternative allele
of rs1343025 is associated with increased ex-
pression of VEGFA. VEGFA regulates cerebral
blood volume and is associated with SCZ,
though the exact impact of VEGFA remains
controversial (58). In the ASD risk loci 16p11.2
(59), we tested 25 variants and discovered one
activity-increasing DAV, rs145650870 (Fig. 3I).
This variant is located in an RG-specific chro-
matin loop for three nearby genes: TUFM,
ATXN2L, and SHSH2B1. The alternative allele
of rs145650870 creates a TFBS for EHF (Fig.
3J). Combined, these results show that our
lentiMPRA approach could be used to priori-
tize variants that affect regulatory activity in
disease-associated loci.

Organoids show comparable lentiMPRA
activity to primary cells

Previous single-cell transcriptomic and epige-
nomic data along with immunohistochemical
analyses suggest that cortical organoids reca-
pitulate many of the cell types in the develop-
ing human forebrain (11, 42, 60–62). To explore
the MPRA “suitability” of organoids, we tested
both our lentiMPRA libraries in 10-week-old
cortical organoids (Fig. 4A), validated for the
expression of relevant cell typemarkers through
immunostaining (Fig. 4B and fig. S6), bulkRNA-
seq (Fig. 4C), and single-cell RNA-seq (fig. S1B).
Efficient lentiviral infection in various cell types
was also confirmed (fig. S1C). Following 9weeks
of directed differentiation toward a dorsal
forebrain fate, organoids were sectioned into
300-mm-thick slices and infected with the
lentiMPRA libraries at 10 weeks. This allowed
diffusion of lentivirus intomost cells, providing
high integration rates per cell [multiplicity of
infection (MOI) = 100; fig. S7]. Slicing is also
known to attenuate hypoxia, leading to better
organoid cell health (63). For each library, we
infected organoids derived from 2 to 3 iPSC
lines with 2 to 4 technical replicates each and
analyzed the data as described for primary
cells. We observed a high correlation between
replicates (average Pearson correlation for DA
library: 0.89, variant library: 0.90) and positive
controls consistently showed higher enhancer
activity compared with negative controls (DA:
P = 6.6 × 10−4; variant: P = 0.027, Wilcoxon
test; fig. S2A), confirming the high quality of
our organoid data.
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Fig. 3. Identification of differentially active variants associated with
psychiatric disorders. (A) Volcano plot showing log2 fold change and −log10
FDR adjusted P-value for variants that have enhancer activity from at least
one allele. Significant variants (FDR < 0.1) were annotated with the PLAC-seq
predicted target gene name and color-coded based on target gene expression
in mid-gestation telencephalon. Two vertical dashed lines indicate the
absolute log2FC of 1. The horizontal dashed line indicates FDR at 10%.
(B) Upset plot showing the number of variants (bar) passing combinations
of different thresholds (dots and lines below bar). The number of DAVs was
highlighted in red. (C) Enrichment log2 odds ratio of DAVs overlapping
different features, including combined or separate cell type–specific DA
regions, adult brain eQTL, GWAS of various psychiatric disorders and low-
frequency variants with minor allele frequency (MAF) less than 0.01.
(D) TFBSs predicted to be altered by DAVs using motifbreakR. Dot color
represents TF expression in primary cortical cells, size represents predicted
magnitude of binding affinity alternation. TFs were ranked by TFBS
alternation significance (motifbreakR −log10 P-value, y-axis). (E and
F) Genomic browser tracks showing examples of causal regulatory variants
and their predicted target genes. The top track shows PLAC-seq chromatin

loops in EN (27), the second track shows bulk RNA-seq in primary cortical
cells, the third track shows bulk H3K27ac ChIP-seq (26), followed by a track
of bulk ATAC-seq in deep-layer cortex (26). The bottom ten tracks show
scATAC-seq in the human cortex (11). DAV rs2193495 (E), located in a
dlEN-specific accessible region, potentially down-regulates TBR1 expression
due to the introduction of EOMES and MAZ binding sites. DAV rs2154984
(F) is predicted to regulate MARK2 expression and disrupt MTF1 and ZNF148
and introduce PPARD and NR2F6 binding sites. (G) Manhattan plot of
SCZ-associated chromosome band 6p21.2 showing the 38 variants tested.
The y-axis shows −log10 of adjusted P-value from MPRA. DAVs are highlighted
in red and annotated with their predicted target gene. Arrows indicate
the direction of allele effect observed in MPRA. (H) DAV rs9368977 located
in 6p21.2 is predicted to disrupt binding of SP3, SP1, KLF4, and EGR4.
(I) Manhattan plot of ASD-associated chromosome band 16p11.2 showing
the 25 variants tested. The y-axis shows -log10 of adjusted P-value
from MPRA. DAVs are highlighted in red and annotated with predicted
target genes. The arrow indicates the direction of allele effect observed in
MPRA. (J) TFBS altered in rs145650870. The alternative allele favors the
binding of EHF and ELK3.
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We compared RNA/DNA ratios between
organoids and primary cells and observed high
correlation for both libraries (average Pearson
correlation DA: 0.89, variant: 0.87, Fig. 4D).
Similar to primary cells, roughly half of tested
sequences were active (total: 31,954, DA: 23,832,
variant: 8122). Most organoid active sequen-
ces were also active in primary cells (Fig. 4E).
To put this high level of concordance in the
context of gene regulation, we performed bulk
RNA-seq on three primary and three organoid
samples (average replicate Pearson correlation,
primary: 0.98, organoid: 0.99) and observed

similar transcript levels between primary and
organoid samples (average Pearson correla-
tion 0.88), with some notable exceptions dis-
cussed below. Finally, we compared the activity
of DA sequences stratified by the cell types in
which they are accessible and found that ac-
tive DA sequences were highly concordant in
organoids versus primary cells (Fig. 4F). The
two cell types having the lowest proportion of
primary cell active DAs replicated in organ-
oids were microglia (86.1%) and endothelial
cells (86.4%), which is expected as these cell
types are thought to be absent in cerebral

organoids and our ability to assay activity of
these DAs relies upon the permissiveness of
MPRAs. These results suggest that cerebral
organoids are a reasonable in vitro model of
developing forebrain enhancer activity and
gene expression, despite some differences in
cell type composition and limits to the cell
type specificity of bulk MPRAs.
Next, we examined the concordance of dif-

ferential allelic activity between organoids and
primary cells. In organoids, we observed a me-
dian absolute log2FC of 0.066, similar to that
in primary cells (0.069), and detected 420DAVs

Fig. 4. Comparison of lentiMPRA results in cerebral organoids and primary
cortical cells. (A) Schematic of the experimental workflow. (B) Microscopic
images of 10-week-old organoid slices immunostained for SOX2 (Cyan), FOXG1
(Red), and DAPI. Scale bar, 200 mm. (C) Normalized transcript count of marker
genes in organoids derived from 3 hiPSC lines (1 = 21792A, 2 = 1323_4, 3 =
20961B). (D) Correlation of log2(RNA/DNA) between replicates in organoids and
primary cortical cells for DA library (left) and variant library (right). (E) Venn
diagrams showing the overlap between organoids and primary cells. (Left)
overlap of active DA regions; (right) overlap of active variants. (F) The proportion
of active DAs in organoids that are also active in primary cells. (G) Overlap
of DAVs. “Top DAVs” were identified using shuffled sequences to define active
and applying a cutoff for absolute log2FC of 0.3. (H) lentiMPRA log2FC in
organoid (x-axis) and primary cells (y-axis). The scatter plot includes variants
identified as DAVs in both organoids and primary cells (gray), variants detected

as DAVs only in organoids (red), and variants detected as DAV only in primary
cells (blue). (I) (Left) Protein-protein interactions (PPI) of enriched TFBS
motifs in active DAs specific to organoids or primary cells. PPI network
generated using STRING (77) database. (Right) heatmap showing the normalized
transcript count of enriched TFs from bulk RNA-seq data. TFs not expressed
(TPM < 1) in all replicates were removed from the heatmap. (J and K) A
DAV (chr15:72984155-72984425, hg38) that contains a BCL6 motif showed
increased activity in organoids versus primary cells (J) and its reference
sequence contains a BCL6 motif (K). (L and M) A DA region (chr2: 209451505-
209451775, hg38) with GLIS3 binding motif showing increased MPRA activity
in primary cells versus organoids (L) and the location of the GLIS3 motif in its
reference sequence shown below (M). (N) TFBSs altered by DAVs that show
an opposite direction of allelic effect between organoids and primary cells. Dot
sizes represent normalized TF expression; color represents log2FC.
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(FDR<10%), of which 74 (18% of organoid
DAVs, 45% of primary DAVs) were also DAVs
in primary cells (Fig. 4G). The larger number
of DAVs identified in organoids is likely due to
additional replicates and smaller batch effects.
Consistent with this, the overlap of DAV sets
was higher (53% of organoid DAVs, 54% of
primary DAVs) when considering only themost
differentially active organoid variants (absolute
log2FC > 0.3 and activity above the median of
shuffled controls, Fig. 4G). Despite this modest
concordance in which variants were statisti-
cally significant, we observed a high correlation
in DAV effect sizes in organoids versus primary
cells (r = 0.91, P = 2.2 × 10−16, Fig. 4H). We con-
clude that cerebral organoids and primary cells
produce comparable lentiMPRA measurements
of differential allelic activity for variants with
the largest effects, with noise and cell type
differences affecting measurements at and
below the significance threshold for identify-
ing DAVs.
Wenextexamined thedifferences in lentiMPRA

results between the two settings. Focusing
first on the 2298 DA sequences that were ac-
tive only in organoids and 2684 only in pri-
mary cells, we performed motif enrichment
analysis and examined the expression level of
enriched TFs (Fig. 4I). Organoid-specific active
DA sequences were enriched for binding sites
of NKX2.1, RUNX, BCL6, and ASCL2. BCL6
is a transcriptional repressor with significant-
ly lower expression in organoids compared
with primary cells (FDR adjusted P-value =
8.8 × 10−7), consistent with our observation
that sequences harboring BCL6 motifs tend to
have higher lentiMPRA activity in organoids.
One such example includes a dlEN-specific
accessible region containing a BCL6 motif
that had significantly higher enhancer activ-
ity in organoids (FDR adjusted P-value =7.91 ×
10−6; data S3, Fig. 4, J and K). In addition,
overexpression of BCL6 is known to inhibit
apoptosis (64) and therefore could reflect ele-
vated cell stress in organoids (65). For the
primary-specific active DA peaks, we observed
enrichment forGLIS3, STAT6, EHF, andHNF1B
motifs. Compared with primary cells, orga-
noids showed higher GLIS3 expression (FDR
adjusted P-value = 8.21 × 10−6) and we ob-
served higher lentiMPRA activity in primary
cells versus organoids for an astro/oligo and
IN-MGE DA region containing a GLIS3 motif,
suggesting that it may be functioning as a
repressor in these primary-specific active se-
quences (Fig. 4, L andM). Thus, motif analysis
helped us identify TFs whose differential ex-
pression between primary cells and organoids
is associated with shifts in enhancer activity,
suggesting repressor versus activator roles for
these TFs and underscoring their importance
in regulating neurodevelopment.
Althoughmost variants showed highly com-

parable effect sizes in organoids and primary

cells, we found 61 with an opposite direction
of effect. Of these variants, 28 were predicted
to alter TFBS motifs and 50% of altered TFs
showed differential expression between orga-
noid and primary in bulk RNA-seq (Fig. 4N).
For example, rs112049982 increased enhancer
activity in primary cells but decreased activity
in organoids and was predicted to improve
OLIG2 binding affinity, a maker gene for
oligodendrocytes (oligo) and oligodendrocyte
precursor cells (OPC), which showed signif-
icantly lower expression in organoids (FDR
adjusted P-value = 8.19 × 10−28), potentially
leading to this difference. This also agrees
with prior knowledge that oligo and OPC are
extremely rare populations in cerebral orga-
noids (11). Together, these results indicate that
despite organoids being a suitable in vitro
model, differences in the trans-regulating en-
vironment should be carefully examinedwhen
interpreting lentiMPRA results.

A sequence-based deep learning model of
lentiMPRA activity

Our large dataset of lentiMPRA measurements
provided an opportunity to characterize the
enhancer code in the developing forebrain by
modeling enhancer activity and then decoding
the model’s understanding of how sequence
variants modulate activity. We designed a
deep learning regressionmodel that combines
a single convolutional layer to learn motif-like
sequence features, followed by two recurrent
layers to learn the position, spacing, and orien-
tation of motifs (25). Sequences were one-hot
encoded into matrices (270bp × 4 nucleotides
per sequence), and the mean RNA/DNA ratio
across replicates was used as the regression
target variable. For each library we trained a
model on sequences from all chromosomes
except chromosome 3 (used as a validation set
to prevent overfitting during training) and
chromosome 4 (held out completely for an
independent measure of predictive perform-
ance). Controls were included in model train-
ing. The variant library also included 15,000
sequences that represent a range of expected
activity levels as a result of varying epige-
netic similarity to validated brain enhancers
in the VISTA database (66). On chromosome
4, the DA and variant models achieved 0.82
and 0.78 Pearson correlation, respectively (Fig.
5A; 0.81 and 0.7 Spearman correlation). The
most comparable sequence-to-activity mod-
el is DeepSTARR (24), trained on fruit fly
STARR-seq data (0.68 Pearson correlation for
non-housekeeping genes). Though direct com-
parisons were not possible as a result of vast
differences in assay type and dataset quality,
our held-out predictive performance suggested
that our model was learning relevant se-
quence features for predicting MPRA activity.
It should be noted that the model shares the
same limitations as its training data; namely,

training on bulk datasets prevents making
cell type–specific predictions, and predictions
will be most accurate for the brain region and
developmental stage of the MPRA.
Convolutional neural networks learn de novo

filters from DNA sequences that represent
position-specific nucleotide frequencies, sim-
ilar to TFBS motifs. We therefore used the set
of sequences that strongly activate each filter
to construct a position weight matrix (PWM)
and compared these against the HOCOMOCO
(v11) database (67) to identify significantmatches
to known TFBS (25). As many filters have sig-
nificant matches to motifs (FDR adjusted
P-value < 0.1) for TFs that are expressed in
mid-gestation telencephalon (mean TPM > 1),
we estimated each filter’s importance for pre-
dicting lentiMPRA activity by setting its out-
put to zero and quantifying how much model
performance decreased (deltaSSE) (25). Top-
ranked filters includedTEAD1,NFATC1, STAT3,
FOXJ3, POU2F1, and BCL11A (Fig. 5B). In ad-
dition to these TFs, ourmethod also highlighted
several USFs that function as cofactors to im-
prove chromatin accessibility (44), consistent
with our finding that motifs for these TFs are
enriched in active versus inactive sequences
(Fig. 1E).
To complement this analysis, we performed

a large-scale in silicomutagenesis (ISM) study.
This method enabled us to quantify how indi-
vidual nucleotide variants affect model predic-
tions and does not rely upon a PWM database,
though we did use PWM similarity to interpret
high-scoring variants. Specifically, we construc-
ted sequences with each possible alternate base
at each of the 270 positions in each of the 17,069
variant-containing oligos, a total of 18.4 million
alleles. We then predicted the activity of each
alternate allele. Examining the distribution
of the largest predicted activity change (up or
down) per oligo, we found that although the
QTLs tested in our lentiMPRA generally have
moderate activity effects, many of the adjacent
synthetic ISM variants have larger effects (Fig.
5C). For 11.6% of oligos, predicted activity can
be increased by ≥50% through a single nuc-
leotide change. Conversely, 19.7% of oligos can
be reduced by ≤ at least 50% through a single
change. As expected, activity-increasing var-
iants frequently create binding sites for tran-
scriptional activators (for example, CEBPD)
or mutate binding sites for repressors (for
example, FOXK1) that are expressed at mid-
gestation whereas activity-decreasing variants
do the opposite (Fig. 5, D and E). All sequences
contained both increasing and decreasing
alleles and inmost cases the two variants with
the largest absolute ISM scores had opposing
effects on activity. At nucleotides with large
absolute ISM scores, the three alternative alleles
tend to all be increasing or decreasing as ex-
pected if the reference base is a high information
content position in a TFBS (Fig. 5F).
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Fig. 5. Sequence determinants of lentiMPRA activity can be modeled with
deep learning. For each library, we trained a deep learning model to predict
lentiMPRA activity in primary cells from sequence alone. (A) Sequences
on chromosome 4 were held out from model training and used to evaluate
model performance. Predicted and measured activity have high Pearson
correlation for the DA library (left) and variant library (right). (B) The model
learned motifs of neurodevelopmental TFs and used them for accurate
predictions. Predictive importance of convolutional filters (change in sum
of squared errors when fixing filter output to zero) is plotted against
significance of matches to HOCOMOCO motifs (TOMTOM q-value < 0.1) for

TFs expressed in developing telencephalon (mean CPM > 1). (C) Applying
ISM to the variant library, we found that the activity of most enhancers can be
tuned up and down through introduction of alternative alleles. The largest
activity-increasing and activity-decreasing alleles for each sequence (purple)
tend to have bigger effects than the lentiMPRA measured effects for QTLs
(yellow). (D) We combined ISM with motifbreakR TFBS disruption scores to
screen TFs for repressor versus activator function in neurodevelopment,
using the most activity-changing alternative allele for each sequence in the
variant library. TFs where predicted activity is anti-correlated with motif
score tend to repress expression (top) and those with a positive correlation
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As an example, we highlight the region
around eQTL rs2883420 (Fig. 5, E and F)
that has strong matches for SRY-like motifs.
ISM predicts that all three alternative alleles
at rs2883420 increase activity (predicted RNA/
DNA ~0.97). In lentiMPRA the reference allele
was inactive (RNA/DNA ~0.8), whereas the al-
ternative allelemade the sequence nearly active
(RNA/DNA ~0.96), fitting with our prediction.
Further examination of the sequence effects of
this eQTL (Fig. 5F) found a strong disruption of
motifs for repression-capable TFs, such as SOX2
(68) and SRY (69). ISM also predicted increased
activity for nonreference alleles in a TFBS-sized
region surrounding rs2883420, with most of
these having larger effects than the eQTL, con-
sistent with our genome-wide observations
(Fig. 5C). These findings indicate that ourmodel
is learning de novo PWM-like representations
which together form neurodevelopmental reg-
ulatory grammar. Such amodel canbe leveraged
to perform ISM, revealing how variants not
present in an MPRA alter enhancer activity
and TF binding or to design cell type–specific
enhancers with precisely tuned activity levels.

Discussion

Gene regulatory elements have a major effect
on human brain development and neurode-
velopmental disorders.We combined lentiMPRA
and deep learning to annotate thousands of
regulatory elements in the developing cortex
and cerebral organoids. This work provides a
large catalog of functional human brain devel-
opmental enhancers and variants, along with
deep learning models that can accurately pre-
dict cell type–specific regulatory regions and
variant effects. These functional enhancers
and variants will aid in the identification of
genetic markers and drug targets, supporting
advances in both genetic epidemiology and
personalized therapeutics for psychiatric dis-
orders. In addition, it showcases the usability
of cerebral organoids for testing regulatory ac-
tivity in mid-gestation and highlights several
differences in the trans-regulating environ-
ment that should be taken into account.
One limitation of MPRAs is that they mea-

sure the regulatory activity of a sequence but
do not identify its target gene. Another caveat
is the capability to detect cell type–specific reg-
ulatory elements in bulk tissues. This could be
due to several factors: (i) Selecting candidate
sequences from scATAC-seq, which has low
resolution per cell and is descriptive. Nonethe-

less, nearly half of the 48,861 cell type–specific
open chromatin regions that we tested had
enhancer potential in primary cells and/or
organoids. (ii) Another factor is thatMPRA tests
sequences outside their native genomic envi-
ronment. For example, we observed lentiMPRA
activity for some microglia- and endothelial-
specific DA sequences in organoids, despite
these cell types being absent or very rare (11).
We hypothesize that this is due to sequences
being activated by TFs present in other cell
types that do not activate the endogenous se-
quence because of repressive chromatin. (iii) It
is more difficult to detect active regulatory
elements for nonabundant cell types in bulk
MPRA. We indeed found that abundant cell
types, such as neurons and radial glia, had
higher percentages of active cell type–specific
DA sequences compared with rarer cell pop-
ulations. For microglia, this could also be due
to its resistance to lentivirus infection (70) (fig.
S1C), leading to its lower active DA per-
centage (43.9%). (iv) Our MPRA tested short
(270-bp) sequences that could lack additional
sequences, which may fine-tune cell type–
specificity. (v) Technical differences between
our MPRA and the immunostaining and lucif-
erase assays. In addition, as a result of their
low throughput nature, only a small number
of sequences can be tested. Nonetheless, our
validation of 11 regions in developing brain
tissues and 24 sequences in sorted EN or
microglia cells identified a few sequences show-
ing expected cell-type specificity, whereas the
rest were nonspecific. Future studies that uti-
lize single-cell techniques or purified cell popu-
lations to validate a larger number of sequences
will enable amore comprehensive analysis of the
complexity of cell type–specific regulation.
The cerebral organoids produced highly

consistent lentiMPRA measurements for the
same sequences in primary cortical cells. It is
worth noting that the high concordance may,
in part, be attributed to the “permissiveness”
ofMPRA. However, our bulk RNA and scRNA-
seq data also showed significant consistency
between primary cortex tissue and cortical
organoids. Although differential allelic activity
was highly correlated for the variants with the
largest effects, at least half of the DAVs iden-
tified in organoids or primary cells were not
statistically significant in the other contextwith
some having opposite allelic effects. However,
we also found that these discordant results
could shed light on differences in the cellular

environment between these two contexts.
We iden- tified BCL6 and GLIS3 as TFs whose
differential expression in primary cells versus
organoids can explain the lentiMPRA’s differ-
ential activity. By analyzing whether motifs
are positively or negatively correlated with
activity, both this analysis andourdeep learning-
based ISM analysis showed how lentiMPRA
data can be used to infer TF function. These
computational inferences are needed as many
TFs have both repressive and activating func-
tions [e.g., (42, 71–73)].
We evaluated the regulatory effect of 17,069

brain QTLs linked to psychiatric disorders,
identifying 164 differentially active variants.
This number is in line with other MPRAs that
tested the effect of single-nucleotide variants
(13, 14) observing relatively small effects of
single nucleotide substitutions, especially com-
mon alleles, on regulatory activity. Our deep
learning model supports this conclusion; pre-
dicting that many nucleotide changes in the
same regionswe tested, including alleles never
or rarely seen in people, would show greater
differential activity than brain QTLs. In addi-
tion, it is worth noting that we observed a
modest correlation between MPRA and eQTL
effect sizes. This may highlight the need for
further functional validation using alternative
methods, such as prime editing screens. An-
other potential caveat is the use of adult instead
of developmental brain QTLs, which could be
more relevant for neurodevelopmental disorder–
associated genes. Additionally, noncoding vari-
ants affect different layers of transcriptional
regulation than coding variants. MRPAs de-
tect variants affecting enhancer activity or
TF binding (74) but not those that modulate
genome folding, splicing, or other gene expres-
sion aspects. Finally, because about half of the
DAVswedetected are in cell-type–specific open
chromatin regions, we expect that performing
lentiMPRA on mixed cell populations limits
the detection of allelic effects that vary across
cellular contexts.
Despite detecting only 164 high-confidence

DAVs, integrative analysis of our data with
publicly available chromatin interaction data
linked many of these DAVs to one or more tar-
get genes expressed in neurodevelopment.
Predicted target genes of many DAVs are
known risk genes or within susceptibility loci,
such as TBR1 and MARK2 for ASD or NFKB2
and SUFU for SCZ. In particular, for large psy-
chiatric disorder–associated loci, our results for

tend to be known activators (bottom). This relationship can be used to
decode whether the model has learned an activator versus repressor role for
TFs that function in both ways. (E) The reference T allele of eQTL rs2883420
(lentiMPRA RNA/DNA 0.8) matches motifs of repressors SRY and SOX2,
whereas the alternate C allele disrupts a high information content position in
both motifs, resulting in a large activity increase (lentiMPRA RNA/DNA =

0.97, predicted RNA/DNA = 0.96). (F) ISM predicts that the other two
possible alleles at rs2883420 also increase activity (middle, sequence logo
indicates magnitude and direction: up = increasing, down = decreasing).
Alternative alleles at adjacent nucleotides overlapping TF motifs (top, positive
strand = black, negative strand = gray) have even larger predicted effects
on activity. Region shown is chr10:86,851,230-86,851,500 (hg38).
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6p21.1, 6p21.2, and 16p11.2 showcase the utility
of lentiMPRA to identify potential disorder–
associated regulatory variants in a high-
throughput manner. In summary, we nomi-
nated several differentially active QTLs as
potential causal variants of known disorder
genes/loci, paving the way for developing ge-
netic diagnostic and therapeutic tools.
Overall, our work strengthens the utility of

using primary cell culture, organoids, MPRAs,
and deep learning to investigate regulatory
elements and variants involved in human brain
development. Future work may consider utiliz-
ing an organoid lentiMPRA approach to test
libraries from various psychiatric disorder–
derived or nonhuman primates iPSCs. Anoth-
er technological development that could be
used to expand upon this study is single-cell
MPRA (75, 76). Although currently limited to
a small number of sequences, this approach
could eventually overcome some limitations
we faced testing cell type–specific DAs in a
bulk assay. It will also be critical to leverage
CRISPR screens to assess the endogenous
activity of candidate regulatory sequences, in-
cluding those validated for activitywithMPRAs,
although with their own caveats such as the
need for high effect sizes on target genemRNA
levels. Deciphering the regulatory code of hu-
man brain development will require integra-
tion of all these strategies, and the datasets
and models generated in this work are a step
in that direction.

Methods summary

A full description of the materials and meth-
ods is provided in the supplementary mate-
rials (25). A brief summary of key methods is
provided below.

Lentivirus-based massively parallel
reporter assays

lentiMPRA was performed to investigate the
regulatory potential of differentially accessible
regions in the developing brain and brain
eQTL variants. Unique 15-bp barcodes and a
minimal promoter were attached to oligo lib-
raries, which were subsequently cloned into a
lentiMPRA backbone and packaged into len-
tivirus. The resulting lentivirus libraries were
used to infect primary cells dissociated from
human GW18 cortex and organoid slices. In-
tegrated DNA barcodes and transcribed RNA
barcodes were sequenced to determine the reg-
ulatory potential of each candidate sequence.

Deep learning model

Separate deep learning regressionmodels were
trained to predict MPRA RNA/DNA ratios from
a given DNA sequence (270-bp inserts) for each
library and tissue type. The mean RNA/DNA
ratio across replicates was used as a regression
target. Inserts on chromosome 3were held out
for validation during training to enable early

stopping and inserts on chromosome 4 were
held out as a final test set for measuring per-
formance. A single convolutional layer learned
filters often matching known neurodevelop-
mental TFs and USFs; two recurrent layers
learned patterns ofmotif position, orientation,
and spacing that were important for predic-
tion. In silicomutagenesis identified nucleotides
important for prediction as well as alternate
bases predicted to change affinity for activa-
tor and/or repressor motifs, resulting in large
predicted changes in enhancer activity.
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