
744 | Nature | Vol 643 | 17 July 2025

Article

Single-cell transcriptomic and chromatin 
dynamics of the human brain in PTSD
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Bertrand R. Huber6, Daniel Levey3, Jill R. Glausier7, David A. Lewis7, Joel Gelernter3,6, 
Paul E. Holtzheimer6,8, Matthew J. Friedman6,8, Mark Gerstein9,10,11,12, Nenad Sestan13, 
Kristen J. Brennand3,14, Ke Xu3,6, Hongyu Zhao4, John H. Krystal3,6, Keith A. Young15,16, 
Douglas E. Williamson5,6, Alicia Che3, Jing Zhang1 ✉ & Matthew J. Girgenti3,6,13 ✉

Post-traumatic stress disorder (PTSD) is a polygenic disorder occurring after extreme 
trauma exposure. Recent studies have begun to detail the molecular biology of PTSD. 
However, given the array of PTSD-perturbed molecular pathways identified so far1,  
it is implausible that a single cell type is responsible. Here we profile the molecular 
responses in over two million nuclei from the dorsolateral prefrontal cortex of 111 
human brains, collected post-mortem from individuals with and without PTSD and 
major depressive disorder. We identify neuronal and non-neuronal cell-type clusters, 
gene expression changes and transcriptional regulators, and map the epigenomic 
regulome of PTSD in a cell-type-specific manner. Our analysis revealed PTSD- 
associated gene alterations in inhibitory neurons, endothelial cells and microglia and 
uncovered genes and pathways associated with glucocorticoid signalling, GABAergic 
transmission and neuroinflammation. We further validated these findings using 
cell-type-specific spatial transcriptomics, confirming disruption of key genes such  
as SST and FKBP5. By integrating genetic, transcriptomic and epigenetic data, we 
uncovered the regulatory mechanisms of credible variants that disrupt PTSD genes, 
including ELFN1, MAD1L1 and KCNIP4, in a cell-type-specific context. Together, these 
findings provide a comprehensive characterization of the cell-specific molecular 
regulatory mechanisms that underlie the persisting effects of traumatic stress 
response on the human prefrontal cortex.

Post-traumatic stress disorder (PTSD) is a common mental health dis-
order that occurs in the aftermath of serious trauma. PTSD occurs in 
the general population at a rate of approximately 6–8%2,3, is moder-
ately heritable (ranging from 24% to 40%)4 and is highly polygenic5–8. 
Recent studies have begun to elucidate the molecular biology of the 
post-mortem brain in individuals who had PTSD9–12. These studies have 
predominantly focused on the prefrontal cortex (PFC) and the amyg-
dala and have identified molecular changes in several gene pathways, 
including GABAergic signalling, immunity and neuroinflammation, 
and glucocorticoid signalling. Given the highly diverse nature of the 
affected biological processes, it is unlikely that one particular cell type 
is responsible for PTSD pathophysiology.

Gene expression in the human brain is orchestrated by a combina-
tion of cis-regulatory elements (CREs), chromatin modifications and 
transcription factor binding to enhancers and promoters of genes. The 
role of CREs in specific cell types is critically important in understanding 
how disease risk variants regulate gene expression. Previous work has 
identified significant changes in DNA methylation in PTSD12,13; however, 
to our knowledge, there have been no studies comprehensively exam-
ining the single-cell chromatin landscape of the brain in PTSD. Recent 
advances in genomic technologies now enable the interrogation of 
chromatin assemblies in individual cells, and these assays can be coupled 
with gene expression analysis to provide the resolution needed to iden-
tify how risk variants regulate transcription within individual cells14–16.
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Here we present a multi-omic analysis of more than two million indi-
vidual nuclei from the dorsolateral PFC (DLPFC) of three diagnostic 
groups: individuals with major depressive disorder (MDD), individuals 
with PTSD and control individuals with neither condition (CON). We 
performed paired single-nucleus RNA sequencing (snRNA-seq) with 
single-nucleus assay for transposase-accessible chromatin sequencing 
(snATAC-seq). We annotated and censused all major cell types, includ-
ing excitatory and inhibitory neurons and non-neuronal cell types, by 
integrating transcriptomic and epigenomic profiles. We identified 
both cell-type-specific differentially expressed genes (DEGs) in PTSD 
and converging and diverging expression changes between PTSD and 
MDD. We further performed high-resolution single-cell spatial tran-
scriptomics on tissue from 18 donors, confirming DEGs and disrup-
tion of cell-to-cell communication (CCC) patterns in somatostatin 
(SST) interneurons and microglia in PTSD. Next, we constructed the 
gene expression regulatory landscape of PTSD by integrating RNA and 
ATAC modalities to define CREs and link them to specific genes and 
to fine-map eight credible risk loci within these putative enhancers. 
We discovered selective changes in the glucocorticoid system that 
were, unexpectedly, most pronounced in endothelial cells. In addition, 
we identified vulnerability of SST interneurons in PTSD and global 
shifts in the transcriptome, reflecting decreases in SST signalling and 
neurotransmission. Overall, this work enabled characterization of 
gene pathways and their dynamics in diverse cortical cell types and 
prediction of cis-regulatory logic and associated factors underpinning 
the molecular aetiology of PTSD.

Single-cell multi-omic analysis of the PFC in PTSD
To dissect the single-cell-type gene expression and regulatory changes 
in PTSD (Fig. 1a), we performed snRNA-seq and snATAC-seq on the 
DLPFC of 111 donors. We profiled 36 donors with PTSD, 36 with MDD 
(psychiatric control) and 39 with neither (CON) (Extended Data 
Fig. 1a). We report results from a discovery cohort of 935,371 nuclei 
for snRNA-seq (Fig. 1b and Supplementary Fig. 1), 473,033 nuclei for 
snATAC-seq (Fig. 1c and Supplementary Fig. 2) and 119,431 nuclei for 
single-nucleus multiomics (snMultiome) (Fig. 1d and Supplementary 
Fig. 3). The inclusion of a small snMultiome dataset was used to match 
barcoded mRNAs directly with chromatin from the same nuclei. Four 
snMultiome samples overlapped with the discovery dataset (Extended 
Data Fig. 1b and Supplementary Table 1).

We identified excitatory neurons (EXNs; four subtypes: CUX2, RORB, 
FEZF2 and OPRK1), inhibitory neurons (INs; five subtypes: LAMP5, 
KCNG1, VIP, SST and PVALB), oligodendrocytes (OLGs), oligodendro-
cyte progenitor cells (OPCs), endothelial cells (ENDs), astrocytes (ASTs) 
and microglia (MG; Fig. 1b and Extended Data Fig. 2a) with expression 
profiles of cell-type-specific marker genes (Extended Data Fig. 2d). The 
number of nuclei per cell type and dataset is reported in Supplemen-
tary Table 2. Differential abundance of cell types was calculated using 
scCODA17 based on the number of nuclei isolated across modalities. 
We found decreases (false discovery rate (FDR) < 0.05) in the number 
of OLGs in PTSD versus CON and MDD (Fig. 1b). We identified all seven 
canonical brain cell types using snATAC-seq (Fig. 1c and Extended Data 
Fig. 2b) with chromatin accessibility profiles of each marker (Extended 
Data Fig. 2e) and snMultiome (Fig. 1d and Extended Data Fig. 2c). To 
identify more specific transcriptomic cell subtypes (Extended Data 
Fig. 2f), we used previous annotations18 to identify 61 subtypes: 18 EXNs 
and 30 INs and 13 non-neuronal subtypes, including two OLGs, three 
ASTs, macrophages, T cells (T SKAP1 CD247), smooth muscle cells and 
pericytes (Extended Data Fig. 2f,g).

PTSD-specific changes in gene expression
We performed differential gene expression analysis across all 14 
cell-type clusters using two common cell-based DEG analyses: MAST19 

(Supplementary Table 3) and Wilcoxon (Supplementary Table 4). In 
addition, we utilized a mixed linear model of gene expression20, which 
allows correction of sample-based bias (Supplementary Table 5). 
Finally, we performed a sample-based pseudobulk analysis using 
DESeq2 (ref. 21) (Supplementary Table 6). Here we define snDEGs as 
overlapping significant DEGs between MAST and Wilcoxon (Methods). 
For our DEG analysis, we analysed the canonical cell types and sub-
types (Fig. 1e). We found 322 DEGs in EXNs and 66 in INs, with the most 
(557) occurring in CUX2 EXNs. Across the seven cell types, we identi-
fied 3,431 DEGs from MAST and 2,989 from Wilcoxon. Of those, 1,376 
DEGs overlapped in the same direction and included 1,184 unique genes 
(PTSD snDEGs; Fig. 1f and Supplementary Table 7). We found that 9.92% 
of DEGs were significantly altered in both EXNs and INs (Fig. 1f), and 
no DEG was regulated across all cell types. Cosine similarity revealed 
the highest concordance of gene expression within neuronal subtypes 
(Extended Data Fig. 3a).

Gene Ontology analysis of PTSD snDEGs (Extended Data Fig. 3b,c and 
Supplementary Table 8) and PTSD cell-type-specific DEGs (Extended 
Data Fig. 3d and Supplementary Table 9) showed enrichments in ubiqui-
tin binding, cell stress response and cadherin binding. Nebula revealed 
similar enrichments, including cadherin binding, phosphodiester-
ase signalling and axonogenesis (Supplementary Table 10) across 437 
DEGs. Pseudobulk analysis revealed enrichment for transcription factor 
binding and oestrogen receptor signalling from additional significant 
DEGs for EXNs (73) and INs (19), but few in non-neuronal cell types (for 
example, MGs (8) and OPC (1); Supplementary Table 11). In addition, 
we observed sex-specific responses to PTSD and MDD, consistent with 
previous observations9 (Supplementary Tables 12–16).

Analysis of high-quality bulk tissue RNA-seq from a partially over-
lapping cohort (n of approximately 150 samples)9 showed consist-
ent direction and magnitude for the top PTSD snDEGs (Fig.  1g), 
including previously identified genes FKBP5, YBX3 (ref. 9) and HDAC9 
(ref. 11). Globally, we found high correlation between both datasets 
(r = 0.69; Extended Data Fig. 3e). We were able to identify many 
novel subtype-specific genes including GRM5 (refs. 22,23) in LAMP5 
INs and CLU24 in CUX2 and OPRK1 EXNs (Supplementary Table 7), 
which have been previously implicated in suicide and Alzheimer’s 
disease. We found increases in FKBP5 expression in ENDs (log2 fold 
change (log2FC) = 1.42, FDR = 3.42 × 10−128) and in OLGs (log2FC = 1.02, 
FDR = 7.63 × 10−282; Fig. 1g). FKBP5 transcripts have been reported 
to be upregulated in the post-mortem frontal cortex in PTSD9 and 
inversely associated with mushroom spine density25. We compared 
our DEG results to a partially overlapping smaller dataset (n = 10–11 
per diagnostic group)26 and found moderate overlap in the number 
and direction of nominally significant DEGs with both our PTSD 
(61.4%) and MDD (72.7%) cohorts across cell types (Extended Data  
Fig. 3f,g).

Gene expression comparisons between PTSD and MDD
We included a psychiatric control group with a condition (MDD) that is 
highly comorbid in patients diagnosed with PTSD (more than 50%)27–29. 
We systematically compared the upregulated and downregulated genes 
in PTSD versus CON and MDD versus CON to identify common and 
divergent molecular mechanisms. We analysed the MDD cohort in the 
same manner as the PTSD cohort (Methods) and identified 1,918 MDD 
snDEGs (Extended Data Fig. 4a and Supplementary Table 17). Overall, we 
found high overlap (57.6%) in snDEGs between MDD and PTSD (Fig. 1h), 
with 502 PTSD-specific and 1,236 MDD-specific snDEGs (Supplemen-
tary Tables 18 and 19). Analysis of the PTSD-specific snDEGs revealed 
enrichment for pathways related to calmodulin signalling, cadherins 
and ubiquitin binding (Fig. 1i and Supplementary Table 20). We found 
high correlation in global transcript levels between snRNA-seq and 
bulk MDD datasets (r = 0.72; Extended Data Fig. 4b) and moderate 
correlation between the top MDD DEGs (Extended Data Fig. 4c). We 
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observed the highest degree of overlap in DEGs between MDD and 
PTSD in non-neuronal cell types (Extended Data Fig. 4d).

To characterize the differences between PTSD and MDD, we exam-
ined DEGs that were divergent in expression (that is, up in PTSD and 

down in MDD, and vice versa) through threshold-free rank–rank hyper-
geometric overlapping30. We found significantly high enrichment in 
concordant genes (87.8%) and low enrichment in discordant genes by 
P value (Extended Data Fig. 4e) and odds ratio (Extended Data Fig. 4f). 
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Twelve genes were significantly discordant (down in PTSD and up in 
MDD) across cell types. Of note, CTNNA3 (encoding catenin α3) was 
downregulated in seven out of nine neuronal subtypes in PTSD and 
upregulated in MDD, and HSPA1A (encoding heat shock protein A1A) 
was downregulated in PTSD but upregulated in MDD endothelial cells 
(Fig. 1j and Supplementary Table 7).

Our large sample size allowed us to examine a subset of donors who 
had PTSD but not depression. We calculated DEGs between PTSD with 
no depression (n = 8; Supplementary Table 21) and PTSD comorbid 
with depression (n = 27; Supplementary Table 22) and each versus CON 
and found the highest proportion of overlapping DEGs between PTSD 
with depression and PTSD snDEGs (Extended Data Fig. 4g) for most 
cell types. Although our PTSD with no depression cohort is admittedly 
underpowered compared with the rest of our study, several findings 
emerged from this analysis. We found significant changes in BDNF in 
EXNs (log2FC = −0.45, FDR = 3.86 × 10−40), a gene long implicated in the 
effects of classical31 and rapid antidepressant32 actions (Supplementary 

Table 21). Although the strength of these findings is difficult to conclude 
with certainty, this preliminary analysis points to an unmet need to col-
lect and analyse tissue from donors with PTSD and without comorbid 
mood disorders.

Spatial validation of PTSD gene expression changes
We identified many transcript expression changes across all cell types 
of the DLPFC. To confirm these changes, we used the 10X Xenium plat-
form to generate spatial gene expression data at single-cell resolution 
for n = 18 samples (4 PTSD, 4 MDD and 10 CON, Supplementary Fig. 4) 
for a targeted panel of genes (366) selected on the basis of cell-type 
markers and expression changes in our snRNA-seq analysis (Fig. 2a, 
Extended Data Fig. 1c and Supplementary Table 23). We analysed our 
spatial data parsed by both soma (Supplementary Table 24) and nucleus 
(Supplementary Table 25), and subsequently clustered transcripts 
using Squidpy33 and canonical cell-type annotations (Fig. 2a) from our 
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snRNA-seq results (Fig. 2b). We observed 550,520 total cells (scXenium) 
with a median of 347 total transcripts per cell and 100 unique transcripts 
(Extended Data Fig. 5a, top). Similarly, we observed 523,314 total nuclei 
(snXenium) with a median of 87 total transcripts per nucleus and 42 
unique transcripts (Extended Data Fig. 5a, bottom). We found signifi-
cant enrichment for END markers (putative blood vessels) near the 
pial surface and OLG markers localized to the white matter (Extended 
Data Fig. 5b). Visualization of cell-type-annotated nuclei and individual 
transcripts revealed the detailed structure of the DLPFC with high reso-
lution (Extended Data Fig. 5c, top). We did not find major anatomical 
differences among samples after post-Xenium haematoxylin and eosin 
staining (Extended Data Fig. 5c, bottom).

To validate our snRNA-seq dataset, we explored the expression 
changes across cases (n = 4 MDD and n = 4 PTSD) versus controls (n = 10 
CON) for all cell types of the DLPFC using MAST (Fig. 2c). We observed 
most gene expression changes in neurons. We compared these results 
with our snRNA-seq MAST results and found the highest DEG overlap 
by fold-change direction (53%), with neurons (73% EXNs and 42% INs), 
OPCs (64%) and ENDs (62%; Fig. 2d). Globally, we found high correla-
tion of both nuclear transcripts of snRNA-seq and snXenium (r = 0.62; 
Extended Data Fig. 5d) and scXenium (r = 0.61; Extended Data Fig. 5e). 
The high correlation between snRNA-seq and scXenium suggests that 
soma transcript levels are accurately reflected in the nucleus.

We observed a significant change for 88 DEGs in ENDs (Fig. 2e), 
with 31 overlapping with our snRNA-seq DEGs. For example, we found 
that FKBP5 was highly expressed in PTSD non-neuronal cells, and 
showed a significant increase (log2FC = 0.14, FDR < 0.01) in expres-
sion in ENDs (Fig. 2f). We observed high FKBP5 expression across 
the entire DLPFC (Fig. 2g,h) and conspicuously higher levels near 
blood vessels (Fig. 2g,h). In addition, we highlight changes in PTSD 
INs, where we observed 102 DEGs with a moderate overlap of 42% with 
our snRNA DEGs (Extended Data Fig. 5f). One of the most upregu-
lated transcripts that we found was CXCL14 (log2FC = 1.4, FDR < 0.01; 
Extended Data Fig. 5g–i), a chemokine expressed in interneurons 
throughout the brain that downregulates GABAergic transmission 
between neurons34,35.

PTSD alters interneuron and microglia communication
To understand the function of expression changes in the PTSD tran-
scriptome, we leveraged empirically derived ligand–receptor pairs to 
perform a CCC analysis by creating a ligand–receptor communication 
network based on transcript expression levels (Methods). We found 
decreased microglial sending patterns in PTSD that were increased in 
MDD (Extended Data Fig. 6a) and driven by upregulation of the SPP1 
transcript in microglia and by neuronal expression of integrin recep-
tors in the SPP1 (osteopontin) pathway (Extended Data Fig. 6b). The 
osteopontin receptor subunit integrin α4 was differentially regulated 
in several neuron subtypes in PTSD (up) compared with MDD (down; 
Supplementary Table 26).

Our findings also suggest differences in neuronal communication 
in PTSD, which may be caused by alterations in synaptic transmission. 
Because neurotransmitter levels cannot be measured by gene expres-
sion, we used NeuronChat36 to approximate neurotransmitter levels by 
expression levels of synthesis and transport transcripts. We calculated 
the difference in neurotransmitter sending cell signalling expression 
between PTSD and CON samples. We found that, in PTSD, SST INs have 
significant decreases in sender communication compared with other 
neuronal cell types (Fig. 3a), which confirms a previous report9. We 
also found that the differential strength of communication from SST 
INs to every other neuronal cell type was downregulated in PTSD, with 
additional decreases with ASTs, ENDs and OPCs (Fig. 3b and Supple-
mentary Table 27). In addition, we observed significant downregula-
tion of the SST transcript (Fig. 3c) in INs across the DLPFC (Fig. 3d,e). 
Noticeably, the most downregulated communication occurs from 

SST INs to KCNG1 INs. Compared with other inhibitory cell types, SST 
INs underutilize GABA, with decreases in the expression of the GABA 
transport transcript SLC32A1 (CON third quartile expression = 0.196 
TPM (transcripts per million); PTSD third quartile expression = 0 TPM) 
in particular, resulting in reduced GABA output to GABRA5, GABBR1, 
GABRB1 and GABRG1 receptors (Fig. 3f).

To validate the finding of reduced communication from SST INs to 
EXNs through GABRA5, we used a rodent model of traumatic stress, 
single prolonged stress (SPS)37 (Extended Data Fig. 6c,d), and assessed 
synaptic function in the mouse PFC (mPFC) using patch-clamp slice 
electrophysiology. We expressed channelrhodopsin-2 (ChR2) selec-
tively in SST INs and recorded the optically evoked SST IN-mediated 
inhibitory postsynaptic currents (eIPSCs) in EXNs from control 
and SPS mice (Fig. 3g). After bath applying the GABA receptor α5 
subunit (GABRAα5)-specific antagonist MRK 016, we observed a 
significant reduction in eIPSC amplitude (Fig. 3h,i), confirming that 
GABRAα5-containing GABA receptors are major contributors to SST 
IN-to-EXN eIPSCs. By contrast, the average amplitude decreased 
slightly after MRK 016 in SPS mice, with the change significantly smaller 
than control, indicating a significant reduction in GABRA5-mediated 
SST IN-to-EXN synaptic transmission (Fig. 3i). In addition, we assessed 
the level of tonic GABA current in control versus SPS (Fig. 3j). Tonic inhi-
bition is mediated by GABAB receptors (containing GABABR1 subunit; 
encoded by GABABR1) directly and by extrasynaptic GABAA receptors 
regulated by GABAB receptors38. SST INs have been shown to silence 
excitatory synaptic transmission through tonic activation of GABAB 
receptors39. We found that blocking GABAB receptors with CGP 55845 
caused a significantly larger reduction in the level of tonic current in 
EXNs in control than in SPS mice (Fig. 3k,l). Together, these results 
support the conclusion that SST IN synaptic transmission to EXNs is 
reduced in SPS mice.

We computed neurotransmitter–receptor interactions for the top 15 
most differential interactions between PTSD and CON (Extended Data 
Fig. 6e), and found significant, but not complete, reduction of infor-
mation flow involving glutamate (Glu)–GRM2 and CORT–SSTR2 path-
ways in PTSD. We also observed significantly reduced signalling in ten 
additional pairings across both glutamatergic and GABAergic neurons 
(Extended Data Fig. 6e). We observed increased PTSD communication 
in CRH (encoding corticotropin-releasing hormone)–CRHR1 signalling 
(generally from INs to EXNs; Extended Data Fig. 6f), consistent with the 
role of CRH in the stress response. We highlight the cell-type-specific 
ligand–receptor activities for several pairs: CRH–CRHR1, Glu–GRM5, 
CORT–SSTR2 and Glu–GRM7 (P = 0.0039, 1.8 × 10−12, 0.06 and 1.8 × 10−12, 
respectively). We observed the most increased communication for 
CRH–CRHR1 from VIP INs to CUX2 EXNs, for CORT–SSTR2 from LAMP5 
INs to OPRK1 EXNs for Glu–GRM5 from CUX2 EXNs to FEZF2 EXNs, and 
for Glu–GRM7 from CUX2 EXNs to OPCs (Extended Data Fig. 6f). These 
findings suggest cell-type-specific gene expression changes altering 
Glu and GABAergic transmission in the PTSD cortex and provide a pos-
sible mechanistic function for PTSD pathophysiology via neuronal 
communication disruption.

PTSD alters cis-regulation of gene expression
We measured chromatin accessibility using snATAC-seq to identify 
cell-type-specific cis-gene regulatory mechanisms in PTSD. We found 
913,717 chromatin peaks across all cell types, mostly within non-coding 
regions of the genome, such as introns (51.1%) and intergenic regions 
(26.2%) (Fig. 4a). Nearly half of all peaks are cell-type specific (Fig. 4b 
and Extended Data Fig. 7a) with the most overlap between EXNs and 
INs (57.1%) and between OLGs and OPCs (57.2%; Fig. 4b and Extended 
Data Fig. 7b). Comparisons with bulk-tissue brain open chromatin 
regions40 (bCREs) from the DLPFC confirmed our findings, with the 
majority (88.6%) of peaks overlapping (fraction > 0.4) averaged across 
all seven cell types (Extended Data Fig. 7c). Integrating snATAC-seq with 
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a subset of six high-quality snRNA-seq samples, we found 1,433,145 
peak-to-gene links (correlation > 0.45, FDR < 1 × 10−4) using the union 
peaks (Fig. 4c). Previous studies have shown that not all peaks control 
gene expression41, therefore we define a CRE as a peak with peak-to- 
gene linkage (correlation > 0.4, FDR < 0.05; Supplementary Table 28), 
and found that 89.18% of peaks are CREs across cell types (Fig. 4d and 
Supplementary Table 29).

To identify disease gene-regulatory mechanisms, we intersected our 
CRE-linked genes (CLGs) with DEGs (CLG–DEGs) for each cell type. We 
found the most overlap in CLGs in ENDs (544) and EXNs (313; Fig. 4e). 

We also found that in EXNs and ASTs, most CLG–DEGs corresponded 
with upregulated genes (84% EXNs and 66% ASTs) and that CLG-target 
DEGs overlapping between cell types were mostly linked to different 
CREs (Extended Data Fig. 7d). For example, YBX3 is upregulated in 
two different cell types (ENDs and ASTs; Fig. 1g) each with unique, 
cell-type-specific CREs (Supplementary Table 29). Similarly, FKBP5 is 
highly expressed in several cell types (Fig. 4f) and significantly upregu-
lated in non-neuronal cells (Fig. 1g). We found that the peak-to-gene 
links that correlated highly (correlation > 0.75) with the transcrip-
tion start site (TSS) of FKBP5 were all ENDs and MG CREs, probably 
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influencing gene expression in these cell types (Fig. 4g, dotted boxes, 
and Supplementary Table 29).

To parse out the different epigenomic effects of PTSD and MDD 
on transcription, we called peaks for all cell types by condition (Sup-
plementary Fig. 5a). After removing the overlapping peaks between 
conditions, and using the same definition of CREs, we found a total 
of 141,939 condition-specific CREs across all seven cell types and 
defined them by genic feature (Supplementary Table 30 and Sup-
plementary Fig. 5b). With the PTSD-specific and MDD-specific CREs, 

we identified PTSD CLG–DEGs and MDD CLG–DEGs across all seven 
cell types (Supplementary Fig. 5c,d). We then overlapped the PTSD 
CLG–DEGs and MDD CLG–DEGs to investigate the cell-type-specific 
epigenomic differences between the two disorders. Globally, we 
found 383 PTSD-specific CLG–DEGs and 1,063 MDD-specific CLG–
DEGs. We found high overlap between CLG–DEGs and snDEGs 
for both PTSD-specific (86%) and MDD-specific (72%) groups 
(Supplementary Fig. 5e), suggesting disease-specific chromatin  
regulation.
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We confirmed our findings using snMultiome from a subset of sam-
ples. Similar to previous analyses, we found the peak-to-gene links 
from 14 subtypes for snMultiome (Extended Data Fig. 8a). In addition, 
we found 774,147 peaks for the seven canonical cell types (Extended 
Data Fig. 8b) and 1,614,118 peaks for all 14 subtypes (Extended Data 
Fig. 8c). Consistent with snATAC-seq, we found approximately 90% 
overlap among snMultiome and bulk ATAC-seq peaks for both cell 
types and subtypes at a minimum overlap threshold of 0.4 (Extended 
Data Fig. 8d,e). In addition, Jaccard matrices show high concordance 
in cell-type-specific peak sets among neuronal cell types, especially 
the EXNs (Extended Data Fig. 8f,g). We also found high concordance 
between snATAC-seq peaks and snMultiome peaks across the seven 
cell types (Extended Data Fig. 8h).

Transcription factor-binding is altered by PTSD
We inferred transcription factor-binding motifs42 within our CREs linked 
to DEGs to understand the upstream regulatory mechanisms govern-
ing gene expression. First, we calculated transcription factor motif 
variabilities in individual cell clusters (Extended Data Fig. 9a). Tran-
scription factor motif enrichment patterns for all cell types revealed 
many shared patterns among cell types, consistent with previous find-
ings43. We hypothesize that chromatin accessibility differences harbour 
transcription factor-binding sites upstream of PTSD snDEGs. To test 
this, we probed for enrichment of the top 20 transcription factors 
with their binding sites in the cell-type-specific CREs (TF–CRE–gene) 
and identified all DEGs regulated by them for each cell type (Supple-
mentary Tables 31–37). We found that EGR1 regulated the most DEGs 
among the top transcription factors enriched in EXNs (Supplementary 
Table 38) and a high degree of overlap among all neuronal transcription 
factor-regulated gene sets (Extended Data Fig. 9e). We highlight two 
transcription factors with high enrichment in EXNs (Extended Data 
Fig. 9b) and INs (Extended Data Fig. 9f) that are upstream of DEGs and 
PTSD genetic risk genes.

To further investigate binding dynamics of these cell types, we per-
formed transcription factor footprinting analysis for two transcription 
factors. EGR2 revealed stronger enrichment in PTSD EXNs than in CON 
EXNs (Extended Data Fig. 9c), consistent with its upregulation in CUX2 
EXNs (log2FC = 0.28, FDR = 1.51 × 10−65). In EXNs, EGR2 was linked to 154 
DEGs and several PTSD risk genes including CAMKV, EGR3 (upregu-
lated), KCNB2 (downregulated) and OPCML (Extended Data Fig. 9d 
and Supplementary Table 31). Similar to the other top transcription 
factors in EXNs (Extended Data Fig. 9e), EGR2 is an immediate early 
gene. We also found significant enrichment of motifs for the neuron-
specific chromatin modifier SMARCC1, which was upstream of 168 PTSD 
snDEGs and 26 PTSD risk variants in EXNs. To confirm downstream 
changes of our PTSD transcription factor networks, human induced 
pluripotent stem cell-derived excitatory neurons were infected with 
lentiviral RNA interference constructs of either EGR2 or SMARCC1 to 
assess transcript changes (Supplementary Table 39). We confirmed 
expression changes of 27 DEGs including CLU and UST (Extended Data 
Fig. 9d, pink circles). TFAP4 was significantly enriched in INs and OPCs 
(Extended Data Fig. 9a,f). In INs, TFAP4 was linked to several PTSD 
genome-wide association study (GWAS) genes including MAD1L1 and 
36 DEGs including ANKRD55, SPRED2 and PDE10 (all downregulated), 
consistent with its role as a transcription repressor44 (Extended Data 
Fig. 9g,h and Supplementary Table 32).

Cell-type-specific cis-regulation at PTSD risk loci
To assess the role that genetic risk variants have in specific cells of 
the brain, we performed linkage disequilibrium score regression 
(LDSC)45 for PTSD, its clinical symptoms (hyperarousal, avoidance and 
re-experiencing), MDD, additional psychiatric disorders, and other clin-
ical and non-clinical traits GWAS (Fig. 5a and Supplementary Table 40). 

We found significant enrichment (FDR < 0.05) for PTSD GWAS signals 
in ATAC peaks of both EXNs and INs for PTSD (total PCL) and in the PTSD 
case–control groups. These findings were mirrored in the symptom 
GWAS as well. We also found significant enrichment (FDR < 5 × 10−4) 
for MDD risk in these same cell types. We compared these findings to 
the bCREs (grey dots) and found higher LDSC enrichment across all 
traits (Extended Data Fig. 10a). To confirm, we performed the same 
analysis using snMultiome to identify PTSD risk gene enrichments 
within neuronal subtypes. Comparing snMultiome with the same bCREs 
(in grey), we found higher LDSC enrichment (Fig. 5b). We identified an 
EXN subtype (OPRK1; −log10P = 6.72) for the total PCL GWAS and an IN 
subtype (KCNG1; −log10P = 6.15) for the PTSD case–control, suggesting 
possible differences in the two populations.

Next, we fine-mapped PTSD-associated polymorphisms within cell-
type-specific CREs in EXNs and INs (Methods). We analysed all risk loci 
from two previous GWAS5,7 and identified eight that fell within cell-
type-specific CREs and focused on these for fine-mapping (Fig. 5c–f 
and Extended Data Fig. 10c–h). We evaluated the posterior inclusion 
probability (PIP) for the PTSD risk single-nucleotide polymorphisms 
(SNPs) and found high correlation of PIP values versus negative log-
transformed GWAS P values (mean correlation = 0.769) of SNPs that 
lie within CREs for 7 out of 8 genes, suggesting that fine-mapping cap-
tured significant lead SNPs with strong GWAS associations (Extended 
Data Fig. 10b). For the gene MAD1L1, we found that the leading causal 
variant for total PCL was rs10235664 (PIP = 0.01), identified by Million 
Veteran Program (MVP), in INs (Fig. 5c). However, after incorporating 
IN CREs, we detected additional variants with higher PIP scores. Of 
note, the variant rs62444919 (PIP = 0.36) exhibited a high degree of 
linkage disequilibrium with the MVP significant variant rs10235664 
(correlation = 0.84) and was also predicted to loop to the TSS of the 
gene ELFN1. The peak-to-gene loops have high-correlation values of 
0.87 (FDR = 4.29 × 10−29) and 0.67 (FDR = 2.29 × 10−13), suggesting strong 
enhancer activity of ELFN1 transcription. We also found a topologically 
associated domain (TAD) in this region using a NeuN+ Hi-C dataset 
track, confirming chromosomal looping between ELFN1 and MAD1L1. 
In addition, our analysis was able to confirm a previously identified 
causal SNP for KCNIP4, rs4697248 (PIP = 0.93), in EXNs (Fig. 5d). We high-
light fine-mapped risk SNPs for six PTSD genes (EGR3, LRFN5, OPCML, 
CAMKV, TCF4 and CRHR1) in EXNs and INs, with their corresponding 
CREs (Fig. 5e,f, Extended Data Fig. 10c–h and Supplementary Table 41). 
By incorporating cell-type-specific ATAC data into the PIP score and 
identifying TADs in these loci, we have identified new putative causal 
risk variants and highlight candidates for additional functional genomic 
validation.

Discussion
Here we report the findings from over 2 million nuclei isolated from the 
PFC of the human brain. To date, this is the largest single-cell genomics 
analysis of a human brain subregion to detail the biology of PTSD and 
MDD. This dataset enabled us to identify genes and pathways associ-
ated with PTSD pathology including glucocorticoid26,46, immune and 
neuroinflammatory mechanisms10, and neurotransmitters, especially 
GABA9. By tracking differences between cases and controls, we were 
able to pinpoint selective vulnerability of SST neurons with marked 
depletion of outgoing synaptic signalling to other neuronal cells. We 
also identified distinct differences between PTSD and MDD focused 
on inflammatory pathways of microglia and cell adhesion in neurons 
(Extended Data Fig. 6). Through cell communication analyses, we 
found increased signalling from MGs in MDD specifically through the 
pro-inflammatory SPP1 pathway that were decreased in PTSD, suggest-
ing suppression of neuroimmune processes and microglial activity in 
the PTSD brain that are not occurring in depression.

We identified more robust gene expression changes in endothelial 
cells than any other cell type and found significant upregulation of 
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Fig. 5 | Cell-type-specific cis-regulation at PTSD disease genetic risk loci. 
 a, LDSC enrichment of various GWAS traits including PTSD, other psychiatric 
and non-psychiatric disorders in the snATAC-seq cell types (*FDR < 0.05, 
**FDR < 0.005 and ***FDR < 0.0005). IBD, irritable bowel disease. b, Lollipop 
plot showing LDSC enrichment of GWAS traits comparing bCREs (grey) versus 
snMultiome peaks (coloured). The colour of the dot represents the subtype in 
snMultiome with the highest enrichment value for the trait. c–f, Cis-regulatory 
architecture at the following GWAS loci and cell types: ELFN1 in IN; and KCNIP4, 
EGR3 and LRFN5 in EXN. IN and EXN CREs were used to fine-map SNPs for  

total PCL6. For the fine-mapping track, we only plotted SNPs with PIP > 0.0001 
for visualization purposes, and only highlight peak-to-gene loops for SNPs with 
PIP > 0.05, outlined in black if they are within a CRE (lead SNP in red, and MVP 
SNP in purple). The top two credible SNPs and MVP SNP are labelled. The loops 
are coloured by cell type (EXN in red and IN in green). Chromosome coordinates 
are: ELFN1 (chr. 7: 1450000–2350000; c); KCNIP4 (chr. 4: 20600000–22600000; 
d); EGR3 (chr. 8: 22193302–23193302; e); and LRFN5 (chr. 14: 41105000–4230000; f). 
NeuN+ TADs are shown above each ideogram, and the coloured triangles 
correspond to the TAD with significant inter-chromosomal looping in the area.
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FKBP5, a possible risk gene for PTSD47 (Fig. 1g). Several studies have 
emphasized the role of FKBP5 in the stress response within neuronal 
cell types48, but our finding and other single-cell transcriptomic studies 
of the PFC49 have consistently identified high levels of FKBP5 transcript 
in endothelial cells relative to neurons, suggesting a yet unknown neu-
rovascular role. One possibility is that FKBP5 changes reflect changes 
in peripheral glucocorticoids movement from the periphery to the 
parenchyma and its upregulation is a compensatory mechanism for the 
hypocortisolic state commonly reported in PTSD50,51. In this scenario, 
more glucocorticoids would need to cross the blood–brain barrier 
where they would be taken up by glial cells, necessitating an increase 
in FKBP5 transcript before reaching destination neurons (Fig. 1g).

We identified sets of genomic peaks that probably regulate gene 
expression changes in PTSD. Although CREs can be identified from 
epigenomic (ATAC) data alone, integration of single-nucleus tran-
scriptomic data allows us to link gene expression to candidate regu-
latory regions with open chromatin. We found a high degree of overlap 
between CREs and corresponding gene expression changes across 
all cell types (Fig. 4e). We have highlighted cis-gene mechanisms and 
linked them to cell-type-specific gene expression changes. Our work 
indicates neurons (both excitatory and inhibitory) as the central cell 
types harbouring genetic risk for PTSD and MDD. By overlaying chro-
matin accessibility maps with GWAS statistics of SNP locations, we 
have unraveled the cis-regulatory relationships disrupted by credible 
disease variants that map to MAD1L1, KCNIP4, EGR3, CRHR1, TCF4 and 
LRFN5 (refs. 5,7). In the case of MAD1L1, we found that causal variants 
within peaks were putative enhancers for the neighbouring gene ELFN1. 
ELFN1 was previously identified as an interneuron-specific synaptic 
protein whose transcript expression was altered in the PTSD frontal 
cortex9. CCC analysis of receptor–ligand expression patterns revealed 
significantly decreased output of SST INs where ELFN1 expression is 
highest. We have described decreases in SST IN output to most major 
cell types with the strongest decreases observed with other neuronal 
cell types. In particular, we found decreased GABAergic signalling to 
major GABA receptors including GABRA5, GABBR1, GABRB1 and GABRG1 
(Fig. 3f) and verified these findings in vivo (Fig. 3h,k). We observed 
increased glutamatergic transmission through mGluR7, a presynaptic 
binding partner of ELFN1 that suppresses synaptic release52. Elevation 
of mGluR7 transmission is consistent with reduced excitatory drive to 
SST INs and subsequent reduction in their output. Given that ELFN1 is 
tightly coupled with mGluR7 at the EXN–IN synapse, we speculate that 
disruption in ELFN1 function may lead to dysregulated mGluR7 signal-
ling and impaired ability to fine-tune excitatory–inhibitory balance 
in the circuit. Together, these findings suggest PTSD-specific effects 
at this gene locus that may impart SST interneuron vulnerability and 
reduced GABAergic communication.

This study provides novel insight into the biology of PTSD and MDD 
but is limited by several factors. We were able to assemble a demographi-
cally well-balanced cohort, matched for sex, age, post-mortem interval 
and psychiatric disease. We believe that the inclusion of MDD as a psychi-
atric control is the best possible, as more than 50% of patients with PTSD 
are diagnosed with some form of depression29, and our study allowed 
us to identify convergent and divergent molecular effects of both dis-
eases. However, we lack a well-powered PTSD group with no depres-
sion phenotype (n = 8), limiting our ability to identify PTSD-specific 
molecular changes. As is the case with most post-mortem brain studies, 
there is also a moderately high rate of illegal drug use and drug-related 
death in both patient cohorts, which could also obscure PTSD-specific 
or MDD-specific molecular effects. Future efforts will be directed at 
increasing the number and types of donors to account for these effects.
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Methods

Human tissue donors
Human post-mortem brain tissue samples were obtained from the 
National Center for PTSD Brain Bank (with consent of the next of kin) 
and the University of Pittsburgh Tissue Donation Program. Individuals 
were a mix of European and African-American descent. Male and female 
individuals were group matched for age and post-mortem interval 
(PMI). Sociodemographic and clinical details are listed in Extended 
Data Fig. 1a and include comorbidities such as the use of tobacco and 
substances of abuse. Inclusion criteria for PTSD, MDD and control 
cases were as follows: PMI < 48 h, age range of more than 18 to less 
than 85 years. A total of 111 individuals (36 PTSD: 19 female and 17 male 
individuals; 36 MDD: 18 female and 18 male individuals; and 39 healthy 
controls: 18 female and 21 male individuals) were used in this study. 
The brain tissue was fresh-frozen and samples from the DLPFC (Broad-
man areas 9/46)53 were collected (approximately 25 mg) from each 
post-mortem sample.

Psychiatric history and demographic information were obtained by 
psychological autopsies performed post-mortem, as well as a review of 
medical records and toxicology reports. Trained clinicians conducted 
structured interviews with informants (usually the next of kin) with 
knowledge of the deceased individuals. To avoid systematic biases, 
PTSD, MDD and control cases from each source were characterized 
by the same psychological methods. Consensus DSM-IV diagnoses for 
each participant were made by trained clinicians who did not conduct 
the psychological autopsies. Of the 36 individuals in the PTSD cohort, 
75% (27 cases) were also comorbid for MDD.

Isolation of nuclei from brain cells for RNA, ATAC and multiome 
assays
Regions of interest were dissected on cryotome (leaflets of approxi-
mately 100–300 µm) from frozen DLPFC and stored at −80 °C. Cell 
nuclei isolation from brain sections were treated similarly to already 
established protocols18,54,55 with some modifications needed to have 
nuclei suitable for two separate assays: gene expression and ATAC. 
To avoid experimental bias, nucleus isolation was done by the same 
person blinded to the metadata for the particular sample. All reagents 
were molecular biology grade and sourced from Sigma unless stated 
otherwise. Small amounts of tissue (10–20 mg) were added into 1 ml 
of ice-cold lysis buffer (‘buffer A’ is 250 mM sucrose, 25 mM KCl, 5 mM 
MgCl2, 10 mM Tricine-KOH (pH 7.8), protease inhibitors without EDTA 
(Roche), RNAse inhibitor (80 U ml−1; Roche), 1 mM dithiothreitol, 1% 
BSA (m/v; Gemini Bio-Products), 0.3% NP-40 (v/v), 0.15 mM spermine, 
0.5 mM spermidine and water; dithiothreitol, RNAse Protector, pro-
tease inhibitors, spermine, spermidine and NP-40 were added imme-
diately before use. The suspension was transferred to a 2-ml Dounce 
tissue homogenizer (Kimble) and lysed with constant pressure and 
without introduction of air with pestle A (2 × 5) and pestle B (4 × 5) in 
cycles of 5. The homogenate was strained through a pre-wetted 40-µm 
tube top cell strainer (Corning). All subsequent centrifugation was 
performed in a refrigerated, bench-top centrifuge with swing-out 
rotor (Eppendorf). Lysates were centrifuged at 1,000g for 10 min at 
4 °C, pellets were saved and resuspended in 0.4 ml lysis buffer buffer 
A. The final 0.4 ml of solution was mixed with 0.4 ml (1:1) of Optiprep 
solution (buffer B was iodixanol 50% (v/v), 25 mM KCl, 5 mM MgCl2, 
20 mM Tricine-KOH (pH 7.8), protease inhibitors without EDTA, RNAse 
inhibitor (80 U ml−1), 1 mM dithiothreitol and water. The suspension 
(25% iodixanol final) was mixed 10× head over tail. The 2-ml tube was 
filled with 0.6 ml of 40% iodixanol cushion (appropriate mix of buffer A 
and buffer B), then overlayed with 0.6 ml of 30% iodixanol (appropriate 
mix of buffer A and buffer B), and sample suspension was overlayed at 
the top. The tubes were then centrifuged at 3,000g for 30 min at 4 °C 
without brakes. After centrifugation ended, the interphase 30–40% 
ring was collected. Out of 300 µl collected, 100 µl was used for gene 

expression studies and 200 µl was used for ATAC studies. One thousand 
microlitre ‘RNA wash buffer’ was added to gene expression samples, 
and samples were mixed and left on ice for 10 min. RNA wash buffer 
was: RNase Protector (80 U ml−1), 1 mM dithiothreitol, 25 mM KCl, 5 mM 
MgCl2, 20 mM Tris-HCl (pH 7.5), 1% (m/v) BSA, 0.1% (v/v) Tween-20 and 
DPBS (14190, Gibco). Five hundred microlitres of ATAC lysis buffer 
was added to the ATAC sample, mixed well and left on ice for 5 min. 
The ATAC lysis buffer was: 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.01% (v/v) Tween-20, 0.01% (v/v) NP-40, 0.001% (v/v) digitonin, 
1% (m/v) BSA and nuclease-free water. After 5 min, 500 µl of ATAC wash 
buffer was added to ATAC sample, mixed well and left on ice for 5 min. 
ATAC wash buffer was: 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.1% (v/v) Tween-20, 1% (m/v) BSA and nuclease-free water. Both 
samples were centrifuged at 1,000g for 10 min at 4 °C, supernatants 
were carefully and completely removed. Gene expression sample was 
counted on a haemocytometer, resuspended in ‘RNA run buffer’ (RNase 
Protector (80 U ml−1), 1 mM dithiothreitol, 25 mM KCl, 5 mM MgCl2, 
20 mM Tris-HCl (pH 7.5), 250 mM sucrose and water) and concentra-
tion adjusted to 1 M per millilitre. The ATAC sample was counted on a 
haemocytometer and resuspended to 3.3 M per millilitre in ATAC run 
buffer (1× Nuclei Buffer (PN2000153, 10X Genomics) and water). The 
samples were brought to the Yale Center for Genome Analysis (YCGA) 
within 15 min and processed by following protocols for 10X Genomics 
Chromium Single Cell ATAC (CG000168 Rev B, 10X Genomics), and 
10X Genomics Chromium Single Cell 3′ Reagent Kits v3 (CG000183 
Rev C, 10X Genomics), respectively, for targeting 10,000 nuclei. For 
some assays that were done with 10X Genomics Chromium Next GEM 
Single Cell Multiome ATAC + Gene Expression (CG000338 Rev A, 10X 
Genomics) the 300 µl sample post-3,000g centrifugation was used 
in its entirety, the steps for ATAC were followed, and the buffers for 
ATAC had 80 U ml−1 RNAse Protector. After the last centrifugation, the 
samples were resuspended in ‘diluted nuclei buffer’ (1× Nuclei Buffer 
(PN-2000207), 1 mM dithiothreitol, 1 U ml−1 RNase Protector and water) 
counted on a haemocytometer at the concentration of 3.3 M ml−1 and 
submitted to the YCGA where the protocol was followed for targeting 
10,000 nuclei. Libraries were sequenced with paired-end 150-bp reads 
on an Illumina NovaSeq 6000 to a target depth of up to 500 million 
read pairs per sample for gene expression (RNA), and up to 500 million 
reads per sample for ATAC.

Xenium in situ transcriptomics
Gene panel design. The Xenium In Situ platform uses targeted panels 
to detect expression genes. Genes (n = 267) are included on the Xenium 
Human Brain Panel, and an additional 99 genes were selected and cura-
ted primarily based on our single-cell atlas of DEGs for the PTSD brain 
(366 genes total). The complete list of genes in our Xenium panel can 
be found in Supplementary Table 23.

Xenium sample preparation. Fresh-frozen tissue samples from control 
(n = 10), PTSD (n = 4) and MDD (n = 4) participants were obtained from 
the National PTSD Brain Bank. Frozen blocks were dissected from the 
DLPFC from the superior frontal gyrus approximately 1 cm anterior to 
the genu of the corpus callosum across all participants. Blocks were 
sectioned at 10 mm thickness and placed on a 10X Genomics Xenium 
slide as per protocol (10X Genomics protocol CG000580 Rev B). The 
Xenium slide with the thaw-mounted tissue was fixed in paraform-
aldehyde solution and then permeabilized in 70% methanol. Tissue 
slides were washed and then inserted into 10X Genomics Xenium slide 
cassettes and then processed through hybridization, ligation and  
amplification protocols (10X Genomics protocol CG000582 Rev C). In 
brief, the pre-designed Xenium Human Brain Gene Expression panel 
with 266 genes along with 99 custom probes were added to the tissue. 
Each circularizable DNA probe contained two regions that hybridized 
to target RNA and a third region that encoded a gene-specific barcode. 
Probes were loaded at 10 nM at 50 °C for overnight hybridization.  
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For ligation, the two ends of the probes bound the target RNA and were 
ligated to generate a circular DNA probe at 37 °C for 2 h. Following liga-
tion, the circularized probe was amplified for 2 h at 30 °C, producing 
multiple copies of the gene-specific barcode for each target.

Xenium imaging. Prepared tissue slides were then loaded for imaging 
on the Xenium Analyzer for in situ analysis. Fluorescently labelled oligos 
were bound to the amplified DNA probes. Cyclical rounds of fluorescent 
probe hybridization, imaging and removal generated optical patterns 
specific for each barcode, which were converted into a gene identity. 
Identified transcripts were then visualized using Xenium Explorer 
software before bioinformatics analysis.

Animals
All animal care and procedures were performed according to the ethical 
guidelines of the Institutional Animal Care and Use Committee at Yale 
University School of Medicine and Yale Animal Resources Center. Adult 
2-month-old male and female C57BL/6 SST–Cre mice (n = 31 mice in 
total) were used for this study. Until stress, all mice were group housed 
and maintained in standard environmental conditions (23 °C; 12 h–12 h 
light–dark cycle) with ad libitum food and water.

Viral injections
Adult mice were anaesthetized using 1–2% isoflurane, placed in a  
stereotaxic apparatus, and maintained at 37 °C during surgery. Each 
mouse received a unilateral microinjection of AAV-Ef1a-DIOhChR2 
(123T/T159C)-eyfp (500 nl; Addgene) using a Nanoject III (Drummond) 
at 50 nl min−1 with a 5–10-min diffusion period before removing 
the glass capillary. The coordinates used for mPFC were anteropos-
terior (AP) = +1.5 mm, mediolateral = +0.2 mm, and dorsoventral =  
+2.4 mm. Two weeks were allowed for recovery and viral expression 
after injections.

SPS
Mice for SPS were handled for 3 days before the stress protocol. On 
the day of SPS, mice (n = 16) underwent a 2-h restraint in a restrainer 
followed by forced swim for 20 min in 23–25 °C water. After 15 min of 
recuperation, mice were exposed to diethyl ether vapour until loss of 
consciousness. Mice were then single housed until euthanized for slice 
electrophysiology (7–14 days after SPS). Control mice (n = 15) were 
group housed throughout the experiment. All mice were weighed daily 
after SPS. Animals were randomly assigned to control or SPS groups. 
Analysis of behavioural data was performed blinded to condition. 
Behavioural data have been provided in Source Data File 1.

Slice electrophysiology
Brain slices containing the mPFC were prepared from control and 
SPS-treated male and female mice as previously described56,57. After 
decapitation, brains were removed rapidly and placed in ice-cold 
(approximately 4 °C) artificial cerebrospinal fluid (ACSF) in which 
sucrose (252 mM) was substituted for NaCl (sucrose-ACSF) to prevent 
cell swelling. Coronal slices (300 µm) containing the mPFC were cut 
in sucrose-ACSF with an oscillating-blade vibratome (Leica VT1000S). 
Slices were then transferred to the fixed stage of an Olympus BX50WI 
microscope for whole-cell recordings. The chamber was continuously 
perfused with normal ACSF at a flow rate of 2–3 ml min−1, with the tem-
perature maintained at 33 ± 0.5 °C. The standard ACSF (approximately 
pH 7.35) was equilibrated with 95% O2/5% CO2 and contained: 128 mM 
NaCl, 3 mM KCl, 2 mM CaCl2, 2 mM MgSO4, 24 mM NaHCO3, 1.25 mM 
NaH2PO4 and 10 mM d-glucose. Pyramidal neurons were visualized 
using a microscope (×40 IR lens) with infrared differential interfer-
ence contrast (IR/DIC). Low-resistance patch pipettes (3–5 MΩ) were 
pulled from patch-clamp glass (Warner Instrument) using a horizon-
tal micropipette puller (P-1000, Sutter Instrument). Patch pipettes 
(3–5 MΩ) were filled with a solution contained the following: 125 mM Cs 

gluconate, 10 mM HEPES, 5 mM BAPTACs, 10 mM Na2-phosphocreatine, 
2.38 mM CaCl2, 4 mM Mg-ATP and 0.3 mM Na2GTP pH 7.33. Whole-cell 
recordings were performed using an Axoclamp-2B amplifier (Axon 
Instruments). The output signal was low-pass-filtered at 3 kHz, ampli-
fied 100× and digitized at 15 kHZ and acquired by using Clampex 10.5/
Digidata 1550A software.

Tonic GABA current was recorded in voltage-clamp configuration 
by holding the membrane potential at 0 mV. The difference between 
holding currents in the presence of the GABAB receptor agonist baclofen 
(10 µΜ; Tocris Bioscience) and after the application of the GABAB recep-
tor antagonist CGP 55845 (20 µM; Tocris Bioscience) was measured. 
Cells were held for 8 min before recording baseline for 2 min, followed by 
5–8 min of recording in each drug application. One minute of recorded 
traces at plateau of each condition was analysed. Holding current was 
measured by using a Gaussian fit of the histogram of the 1-min trace.

For experiments measuring eIPSCs by stimulating SST interneurons 
optogenetically, responses in pyramidal cells were recorded when blue 
light (470 nm) was applied using CoolLED pE-800 through the ×60 
objective. The intensity was set to obtain optimal single-peak responses 
(approximately 300 pA at baseline, 0.1-ms stimulation). Ten traces were 
recorded and averaged for light responses. Average eIPSC peak ampli-
tudes before and after bath applying MRK 016 (1 µΜ; MedChemExpress) 
were measured to calculate the percentage change in IPSC amplitude. 
Electrophysiology data have been provided in Source Data File 1.

iPS cell-derived glutamatergic neuron transfections
Control human induced pluripotent stem (iPS) cell-derived NPCs (neu-
ral progenitor cells) from two lines: NSB553-S1-1, (male, European 
ancestry) and NSB2607-1-4 (male, European ancestry, source: National 
Institute of Mental Health) were used. Both lines were mycoplasma 
negative at the time of experimentation. NPCs were cultured in hNPC 
medium (DMEM/F12 (10565, Life Technologies), 1× N2 (17502-048, Life 
Technologies), 1× B27-RA (12587-010, Life Technologies), 1× antibiotic– 
antimycotic and 20 ng ml−1 FGF2 (Life Technologies)) on Geltrex 
(A1413301, Thermo Fisher). hiPS cell–NPCs at full confluence (1–1.5 × 107 
cells per well of a six-well plate) were dissociated with Accutase (Innova-
tive Cell Technologies) for 5 min, spun down (5 min at 1,000g), resus-
pended and seeded onto Matrigel-coated plates at 3–5 × 106 cells per 
well. Medium was replaced every 2–3 days for up to 7 days until the 
next split.

At day −1, confluent hiPS cell–NPCs were transduced with rtTA 
(Addgene 20342) and NGN2 (Addgene 99378) lentiviruses. At day 0, 
1 µg ml−1 dox (doxycycline) was added to induce NGN2 expression. At 
day 1, transduced hiPS cell–NPCs were treated with antibiotics to select 
for lentiviral integration (1 mg ml−1 G-418). At day 3, NPC medium was 
switched to neuronal medium (Brainphys; 05790, Stemcell Technolo-
gies), 1× N2 (17502-048, Life Technologies), 1× B27-RA (12587-010, Life 
Technologies), 1 µg ml−1 natural mouse laminin (Life Technologies), 
20 ng ml−1 BDNF (450-02, Peprotech), 20 ng ml−1 GDNF (450-10, Pep-
rotech), 500 µg ml−1 dibutyryl cyclic-AMP (D0627, Sigma) and 200 nM 
l-ascorbic acid (A0278, Sigma) including 1 µg ml−1 dox. Of the medium, 
50% was replaced with fresh neuronal medium once every second day.

On day 5, young hiPS cell–NPC NGN2 neurons were replated onto 
Geltrex-coated plates. Cells were dissociated with Accutase (Innovative 
Cell Technologies) for 5–10 min, washed with DMEM, gently resus-
pended, counted and centrifuged at 1,000g for 5 min. The pellet was 
resuspended in neuron medium, and cells were seeded at a density of 
1.2 × 106 per well of a 12-well plate. At day 11, isogenic glutamatergic 
neurons were treated with 200 nM Ara-C (C6645, Sigma) to reduce 
the proliferation of non-neuronal cells in the culture, followed by half 
medium changes. At day 17, Ara-C (cytosine β-d-arabinofuranoside 
hydrochloride) was completely withdrawn by a full medium change 
while adding medium containing four short hairpin RNA (shRNA) 
vectors targeting a transcription factor (Sigma-Aldrich; targeting 
SMARCC1: TRCN0000015632, TRCN0000015631, TRCN0000015630 



and TRCN0000015628; targeting EGR2: TRCN0000013841, 
TRCN0000013840, TRCN0000013839 and TRCN0000013838; total 
multiplicity of infection = 1.0) or a multiplicity of infection-matched 
scramble shRNA control vector SHC016 (Sigma-Aldrich). Medium was 
switched to non-viral medium 4 h post-infection. At day 19, transduced 
isogenic glutamatergic neurons were treated with corresponding anti-
biotics to the shRNA lentiviruses (1 µg ml−1 puromycin) followed by half 
medium changes until neurons were harvested in TRIzol reagent (Invit-
rogen) at day 21 and bulk sequenced at the Yale Center for Genome Anal-
ysis for RNA integrity number and concentration, which were assessed 
using a Bioanalyzer (Agilent). Libraries were constructed using the 
SMARTer Stranded RNA-seq Kit (Takara Bio) preceded by rRNA deple-
tion using 1 µg of total RNA. Samples were barcoded for multiplexing 
and sequenced at 75-bp paired-end on an Illumina HiSeq4000. Samples 
were pooled eight per lane and sequenced at a depth of 50 million reads.

snRNA-seq processing and analysis pipeline
The count matrix was generated by aligning reads to the hg38 genome 
using 10X Genomics CellRanger58 (v6.1.1). For ambient RNA removal, 
to further eliminate technical artefacts and background noise in each 
sample, we used the remove-background command from CellBender 
(v0.2.2)59, which outputs an HDF5 file in which the empty droplets were 
filtered out. For doublet detection, doublets were identified using 
a combination of two computational methods — Scrublet60 (v0.2.3) 
and DoubletDetection61 (v4.2) — and removed from each sample. For 
sample aggregation, we clustered each sample in Pegasus62 (v1.5.0), a 
Python tool for analysing transcriptomes of single cells, then manually 
inspected all uniform manifold approximation and projection (UMAP) 
embeddings and removed six low-quality samples that displayed low 
heterogeneity of cell types, resulting in a total of 105 snRNA-seq sam-
ples. After aggregating these samples into a single data object, we 
filtered cells based on the following criteria: at most 10% mitochondrial 
genes, at least 200 genes and at least 500 unique molecular identifiers. 
Mitochondrial, sex and ribosomal genes were excluded, and only the 
robust genes were included in the final gene set. The final snRNA-seq 
data object had 935,371 cells and 27,982 genes. For clustering and anno-
tation, after cell and gene filtration, the data were log-normalized. 
Next, the top 2,000 highly variable features were found, and principal 
component analysis was applied using the top 50 components. Batch 
correction was performed with Harmony. The top 50 components were 
then used to build a k-nearest-neighbours graph with k = 100 neigh-
bours, and Leiden clustering was used to identify cell clusters. After the 
first round of clustering, marker genes were used to inspect and remove 
clusters that had mixed or unmatched marker gene expression, and 
another round of clustering was performed. Cell-type annotation was 
adapted using markers from Ma et al.18 with three levels of hierarchy: 
(1) 7 cell types, (2) 14 subtypes, and (3) 61 transcriptomic subtypes. The 
seven cell types include: EXN, IN, OLG, OPC, END, AST and MG. The 14 
subtypes include: CUX2, RORB, FEZF2, OPRK1, LAMP5, KCNG1, VIP, SST, 
PVALB, OLG, OPC, END, AST and MG. Subclustering was performed on 
each of the 14 subtypes using markers from Ma et al.18 to identify the 
gene label for each subcluster, resulting in 61 distinct transcriptomic 
subtypes at the finest clustering level (Extended Data Fig. 2d,e).

snATAC-seq processing and analysis pipeline
The peak count matrix was generated by aligning reads to the hg38 
genome using 10X Genomics CellRanger ATAC14 (v2.0.0). For qual-
ity control and filtering, using the outputs of CellRanger, we created 
Arrow files for each sample with cells filtered based on the quality con-
trol parameters filterTSS=4 and filterFrags=1000 in ArchR63 (v1.0.2), 
an R package for analysing scATAC-seq data. ArchR considers three 
characteristics: (1) the number of unique nuclear fragments, (2) the 
signal-to-background ratio, and (3) the fragment size distribution. 
Owing to nucleosomal periodicity, we expected to see depletion of 
fragments that are the length of DNA wrapped around a nucleosome, 

around 147 bp. We used the addDoubletScores function to infer poten-
tial doublets that can confound downstream results. For sample aggre-
gation, after manually inspecting the quality control plots, we removed 
several low-quality samples, the matching ATAC samples of the six 
low-quality RNA samples from above, and samples that did not have a 
matching RNA sample, which resulted in a total of 94 samples. We inte-
grated these samples into an ArchR project, on which all downstream 
analyses for snATAC-seq were performed. The filterDoublets function 
was used to filter doublets for downstream analyses. For clustering 
and annotation, the addIterativeLSI function was used to implement 
iterative LSI dimensionality reduction. Then, addClusters, which uses 
Seurat’s graph clustering as the default clustering method, was used 
to call clusters in the reduced dimension subspace. We visualized the 
embedding using addUMAP and plotEmbedding. Then, we annotated 
the clusters using marker genes from Lake et al.64. After inspecting 
the marker genes, we manually cleaned the UMAP and repeated this 
process twice to produce a final embedding of 473,321 cells annotated 
into seven cell types: EXN, IN, OLG, OPC, END, AST and MG.

snMultiome processing and analysis pipeline
For count matrix generation, we ran CellRanger ARC (v2.0.2) with the 
hg38 genome as the reference to process the initial reads from the raw 
FASTQ files. For quality control and filtering, we used Signac65 (v1.11.0), 
a comprehensive R package for the analysis of single-cell chromatin 
data, to preprocess each snMultiome sample. Signac creates a Seurat 
object containing both RNA and ATAC assays. For quality control, we 
filtered cells using the following parameters: nCount_ATAC > 1,000, 
nCount_RNA > 200 and TSS.enrichment > 2. Then, we filtered doublets 
in the snRNA-seq data using DoubletDetection. For sample aggrega-
tion, we clustered each sample in Signac and aggregated a total of 25 
snMultiome samples in the final data object after manually inspecting 
each UMAP embedding. For clustering and annotation, we normalized 
the gene expression data using SCTransform and reduced the dimen-
sionality using principal component analysis. For chromatin acces-
sibility data, we performed latent semantic indexing with functions 
FindTopFeatures, RunTFIDF and RunSVD to reduce sparsity, which 
is common in snATAC-seq data. We then computed a joint neighbour 
graph that represents both gene expression and chromatin accessibil-
ity measurements using the weighted nearest-neighbour methods in 
Seurat v4 using the function FindMultiModalNeighbors. Finally, we 
plotted the joint UMAP embedding with RunUMAP and annotated the 
119,431 cells into 7 cell types and 14 subtypes (same as in snRNA-seq) 
using canonical marker genes. We converted the Seurat object into an 
ArchR project to call peaks on the 7 cell types and 14 subtypes.

Xenium processing and analysis pipeline
For segmentation, we analysed the Xenium data by both cell and nuclei. 
For cellular boundaries, we used the default settings from the out-
put of Xenium Analyzer, which is based on a 15-µm outward expan-
sion of DAPI-stained nuclei. For nuclear boundaries, we performed 
resegmentation using the resegment command from 10X Genomics 
Xenium Ranger (v2.0) with parameters --expansion-distance=0 and 
--resegment-nuclei=true. For quality control and filtering, we used 
Squidpy33 (v1.6.1), a tool for analyzing spatial single-cell data, to create 
a UMAP embedding for each sample. For sample aggregation, after 
inspecting the individual sample UMAP embeddings and quality 
control metrics, such as the total and unique number of transcripts 
per cell or nucleus, we aggregated a total of 18 Xenium samples. For 
clustering and annotation, clustering was performed separately for 
scXenium and snXenium, resulting in 550,520 cells in the scXenium 
UMAP embedding and 523,314 nuclei in the snXenium UMAP embed-
ding. Both had a fixed number of 366 genes. The clustered object was 
annotated into the seven canonical cell types, on which DEG analysis 
was performed. DEG analysis was performed using MAST for both 
scXenium and snXenium, and the results were compared with the 
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snRNA-seq MAST results. scXenium and snXenium used thresholds 
|FC | > 1.1 and FDR < 0.01, and snRNA-seq used thresholds |FC | > 1.2 
and FDR < 0.01. For visualization, SpatialData66 (v0.1.2) was used to 
visualize the snXenium slides to highlight each cell-type-annotated 
nuclei and individual transcripts in their exact spatial coordinates. A 
single CON slide and a single PTSD slide were used to display differ-
ences in gene expression for a particular gene across the entire DLPFC, 
although the exact difference in gene expression was quantified using 
all CON samples versus all PTSD samples. This is shown as a barplot of 
log-normalized counts comparing the expression of a gene in CON 
versus PTSD across the seven cell types.

Differential abundance analysis
We calculated the differential abundance of cell types between con-
ditions for each data modality using single-cell compositional data 
analysis (scCODA (v0.1.9))17. For RNA and Multiome, we ran the analysis 
across the 14 subtypes; for ATAC and Xenium, we ran the analysis across 
the 7 cell types. For each modality, we used the CompositionalAnalysis 
function with parameter reference_cell_type=‘automatic’, which auto-
matically selects the cell type with the least amount of proportional 
change across conditions. We performed this analysis for PTSD versus 
CON, MDD versus CON, and PTSD versus MDD to compare across the 
three diagnostic cohorts. At FDR < 0.05, we found a significant decrease 
in OLGs for PTSD versus CON and PTSD versus MDD.

Differential gene expression analysis
snRNA-seq-based differential expression analysis was performed 
for each of the 14 subtypes using four tests: (1) MAST19 (v1.21.3) with 
covariate correction including covariates age death, sex, ancestry,  
PMI, RNA integrity number and library size; (2) Wilcoxon without 
covariate correction using the FindMarkers function from Seurat 
(v5.2.1)67; (3) Nebula (v1.5.3)20 for correcting sample-specific effects 
with covariate correction; and (4) DESeq2 (v1.46.0)21 with covariate 
correction. For MAST and Wilcoxon, we first log-transformed the 
CPM (counts per million)-normalized values of the raw count matrix. 
Only genes expressed in at least 5% of the cells in either condition, the 
robustly expressed genes, were included in the analysis. For Nebula, 
we only used genes expressed in at least 20% of the cells in either 
condition and removed samples that had less than 30 cells to reli-
ably estimate the dispersion parameters. In the Nebula function, we 
used an offset term that combines n_counts and n_genes for each cell 
(0.8 × nCount + 0.2 × nFeature), the negative binomial gamma mixed 
model, kappa = 800 and cutoff_cell = 20. For DESeq2, we removed genes 
with either less than 20 reads per sample or a CPM value less than 0.5, 
and removed MDD samples with a very low number of read counts. We 
then utilized the default settings recommended for single-cell analysis 
such as test = ‘LRT’, minmu = 1 × 10−6 and minReplicatesForReplace = Inf. 
We set the fold-change threshold for significant DEGs at |FC | > 1.2; we 
also constrained the significant DEGs to be FDR < 0.01 for MAST and 
Wilcoxon, FDR < 0.1 for Nebula, and FDR < 0.05 for DESeq2 pseudobulk.

For snRNA-seq, we first performed DEG analysis comparing PTSD 
versus CON and MDD versus CON using all samples from the diagnos-
tic cohort. We identified PTSD snDEGs (n = 1,184) and MDD snDEGs 
(n = 1,918) by overlapping MAST and Wilcoxon DEGs that were concur-
rent in direction across the seven cell types. We then compared these 
snRNA-seq DEGs to the bulk RNA-seq DEGs from Girgenti et al.9 and 
Chatzinakos et al.26 studies. These DEG sets were used in downstream 
analyses, including cross-disorder comparisons between PTSD and 
MDD, comparisons with CLGs in the ATAC analysis, and the identifica-
tion of downstream targets of cell-type-specific transcription factors. 
We also investigated sex differences by first performing a baseline com-
parison of CON (male) versus CON (female), followed by PTSD (male) 
versus CON (male), PTSD (female) versus CON (female), MDD (male) 
versus CON (male), and MDD (female) versus CON (female). To examine 
PTSD samples comorbid with MDD, we performed PTSD (+MDD) versus 

CON and PTSD (−MDD) versus CON analyses and compared the results 
to PTSD versus CON in a three-way set relationship. For snXenium and 
scXenium, we performed DEG analysis using MAST and compared the 
results to snRNA-seq MAST results to validate the DEGs.

PTSD versus MDD cross-disorder comparison
To investigate the convergent and divergent properties between PTSD 
and MDD, we first overlapped the PTSD snDEGs and MDD snDEGs, which 
yielded 502 DEGs specific to PTSD and 1,236 DEGs specific to MDD. Next, 
we used the Rank–Rank Hypergeometric Overlap (v1.46.0)30 method 
to identify concordant and discordant gene signatures between PTSD 
and MDD in a threshold-free manner. We identified 12 significantly 
discordant (down in PTSD and up in MDD) genes across cell types. We 
separated the PTSD cohort into those with co-existing MDD (n = 27 
samples) and those without MDD (n = 8 samples) and performed DEG 
analysis against CON to identify several genes specific to PTSD. We also 
identified PTSD-specific and MDD-specific DEGs from the snXenium 
and scXenium MAST DEG analyses.

Gene Ontology enrichment analysis
We performed all Gene Ontology enrichment analyses using the Enri-
chr R package (v3.4)68. We conducted a total of five Gene Ontology 
Enrichr analyses for: PTSD snDEGs, PTSD cell-type-specific DEGs, 502 
PTSD-specific DEGs, PTSD Nebula DEGs and PTSD DESeq2 pseudob-
ulk DEGs. We used the Enrichr function to query the Gene Ontology 
Molecular Function 2023 and Gene Ontology Biological Process 2023 
databases. We highlighted the top FDR significant terms and removed 
duplicates for all Gene Ontology barplots.

CCC analysis
We applied the standard workflow of CellChat69 (v1.5.0), utilizing 
single-cell gene expression of ligands and receptors to infer a CCC 
network. We used the normalized count matrix and cell-type annota-
tions from the snRNA-seq dataset. Among all possible ‘sender’ (a cell 
expressing ligand) and ‘receiver’ (a cell expressing receptor) pairs, 
we constructed a network of communication strength based on the 
expression levels of ligand and receptor genes across cell types. High 
communication strength exists if the sender cell type has a high expres-
sion of ligand genes and the receiver cell type has a high expression of 
receptor genes, and vice versa. The number of inferred ligand–receptor 
pairs depends on the method for calculating the average gene expres-
sion per cell group. We utilized the robust method in CellChat for mean 
calculation called ‘truncatedMean’, with the cut-off ‘trim’ parameter set 
to the default value of 0.05. Two separate analyses were done for each 
diagnostic condition, namely, PTSD and CON. We then identified the 
differential CCCs across conditions. Most importantly, we normalized 
the 3D matrices (sender cell types × receiver cell types × ligand–receptor 
interactions) in each of the CellChat objects to have the same sum to 
account for batch effects of snRNA-seq. We then summed across the 
ligand–receptor interactions to reduce the 3D matrices into a 2D CCC 
network. A differential communication network was then constructed 
through the subtraction of these two networks between PTSD and CON 
groups. Nodes were coloured based on the aggregation of sending 
communication strength, or receiving communication volume, for 
output or input, respectively. We further highlighted specific cellular 
communication differences by using a subset of the 3D matrix (that 
is, MG cell type × receiver cell types × ligand–receptor interactions), 
effectively reducing it into a 2D object.

Neuronal-specific CCC analysis
We applied the standard workflow of NeuronChat (v1.1.0)36, which 
utilizes single-cell gene expression of ligands and receptors to infer 
a neural-specific CCC network. We used the normalized count matrix 
and cell-type annotations from the snRNA-seq dataset. The number of 
inferred ligand–receptor pairs depends on the method for calculating 



the average gene expression per cell group. We utilized the default 
method in NeuronChat of mean calculation called ‘trimean’, with the 
cut-off ‘trim’ parameter set to 0.1. NeuronChat places greater emphasis 
on the second quartile, followed by the third and fourth quartiles, of 
gene expression. Two separate analyses were done for each diagnostic 
condition, namely, PTSD and CON, before moving on to comparative 
differential analyses. For the differential comparison analyses, we 
normalized the 3D matrices (sender cell types × receiver cell types × 
neuroligand–receptor interactions) in each of the CellChat objects to 
have the same sum to account for batch effects across snRNA-seq sam-
ples. We then summed across the neuroligand–receptor interactions 
to reduce the 3D matrices into 2D CCC networks. A differential com-
munication network can then be constructed through the subtraction 
of these two networks between PTSD and CON groups. Sender (ligand) 
communication based on gene expression levels was aggregated to 
calculate the overall sending output for each cell type. The difference 
in sending cell signalling expression was calculated by subtracting 
between PTSD and CON groups. Specific pathways, or slices of the 3D 
matrices, were taken to explore which neurotransmitter–receptor 
interactions contributed to the difference between PTSD and CON.

Peak calling on snATAC-seq clusters
Pseudobulk replicates were created for each of the seven cell types 
with the addGroupCoverages function in ArchR to resolve inherent 
sparsity in the snATAC-seq data. MACS2 (v2.2.9.1)70 was then used to 
call peaks on each pseudobulk replicate. ArchR uses an iterative overlap 
peak merging procedure with the addReproduciblePeakSet function 
to create a final peak set of fixed-width peaks using the following pro-
cedure: (1) peaks were first ranked by their significance, (2) the most 
significant peak was retained and any peak that directly overlapped 
with the most significant peak was removed from further analysis, and 
(3) of the remaining peaks, this process was repeated until no more 
peaks existed. ArchR analyses all the pseudobulk replicates from a 
single-cell type together, performing the first iteration of iterative 
overlap removal, then checks to see the reproducibility of each peak 
across pseudobulk replicates and only keeps peaks that pass a threshold 
indicated by the reproducibility parameter, resulting in a single merged 
peak set for each cell type. This procedure was repeated to merge the 
cell-type-specific peak sets by renormalizing the peak significance 
across the different cell types and performing the iterative overlap 
removal, resulting in a single merged peak set of fixed-width (501 bp) 
peaks, denoted the union peaks. We utilized both cell-type-specific 
peaks and the union peaks depending on the analysis that we per-
formed. The addPeakMatrix function adds the PeakMatrix using the 
union peaks to the data object, which was used for downstream analyses 
such as adding peak-to-gene links and performing transcription factor 
motif analysis. To assess the quality of the peak calling procedure, we 
overlapped our cell-type-specific snATAC-seq peaks with the bulk adult 
bCREs, which were derived from adult brain tissues to study the regula-
tory landscape of the human brain71. From each of the 96 DNase-seq 
experiments, V4 cCREs (candidate cis-regulatory elements) with a 
Z-score > 1.64 were selected. V4 cCREs were obtained directly from 
ENCODE (https://screen.encodeproject.org)40. Subsequently, cCREs 
with limited experimental support were removed and only those ele-
ments that were supported by at least five experiments were retained, 
which resulted in a collection of 253,638 adult bCREs. We used bedtools 
intersect (v2.30.0) with the minimum overlap fraction (-f), ranging 
from 0.2 to 1.0 to calculate the percentage of overlap.

snRNA-seq and snATAC-seq integration
We integrated our snATAC-seq with a subset of our snRNA-seq data (six 
high-quality samples that displayed high heterogeneity of cell types) 
using the addGeneIntegrationMatrix function. We used a constrained 
integration approach, which constrains the cells in the snRNA-seq data 
to the best-matched cells in the snATAC-seq data for the seven cell 

types. Once we had the GeneIntegrationMatrix, we identified peak-
to-gene links using the addPeak2GeneLinks function, which lever-
ages integrated snRNA-seq data to look for correlations between peak 
accessibility and gene expression. We set maxDist = 2 MB to consider 
long-range interactions. We used the plotPeak2GeneHeatmap function 
with k-means clusters = 20 to plot the side-by-side heatmaps of linked 
ATAC and gene regions.

Characterization of cell-type-specific CREs
Once we had the peak-to-gene links, we used thresholds correla-
tion > 0.4 and FDR < 0.05 to identify peaks likely to regulate gene 
expression. The 395,932 cell-type-specific CREs, which are the unique 
peaks from this subset, are the backbone of all ATAC-related analyses. 
We identified CLGs and overlapped them with the cell-type-specific 
DEGs to identify CLG–DEGs for each cell type. These CREs were also 
used in the GWAS analyses to assess LDSC trait heritability and fine-map 
causal variants at PTSD risk loci in a cell-type-specific manner.

Characterization of condition-specific CREs
To investigate epigenomic differences between PTSD and MDD, we 
curated a set of condition-specific CREs in our ATAC data. First, we 
called peaks on each cell-type condition group (for example, EXN 
CON, EXN MDD and EXN PTSD) in the same manner as was done on 
the seven cell types. We identified unique peaks for each condition 
using bedtools intersect. After adding peak-to-gene links and identi-
fying CREs that were likely to regulate gene expression, we identified 
a total of 141,939 condition-specific CREs across all cell-type condi-
tion groups. We then identified PTSD CLG–DEGs by overlapping the 
PTSD-specific CRE-linked genes and PTSD DEGs and MDD CLG–DEGs 
by overlapping the MDD-specific CRE-linked-genes and MDD DEGs for 
each cell type. Globally, we found 383 PTSD-specific CLG–DEGs and 
1,063 MDD-specific CLG–DEGs that were specific to each condition.

snMultiome ATAC analysis
As we achieved subtype resolution in the neuronal clusters with the 
snMultiome data, we were able to call peaks on the seven cell types 
and 14 subtypes. We compared these peaks to the bCREs to assess peak 
calling quality and also compared them with the cell-type-specific 
ATAC peaks. The peak overlap ratio between ATAC and Multiome was 
calculated using bedtools intersect with a minimum overlap of one 
nucleotide. The ratio was then determined by dividing the number of 
intersecting peaks by the total number of ATAC peaks. With subtype 
resolution of neurons, we were able to identify the specific EXN or IN 
subtype that was most enriched in a particular trait using LDSC.

Transcription factor motif enrichment analysis and 
footprinting
Transcription factor motif enrichments were calculated to predict 
which regulatory factors were most active in a given cell type. The 
addMotifAnnotations function in ArchR indicates motif presence 
(P < 5 × 10−5) in the union peaks using a binary matrix, and the peakAn-
noEnrichment function tests either cell-type-specific marker peaks or 
differential peaks for enrichment of various motifs. Besides the previ-
ous transcription factor motif enrichments, the R package chromVAR 
predicts enrichment of transcription factor activity on a per-cell basis 
while controlling for known technical biases. The addDeviationsMatrix 
function, which adds the MotifMatrix to the data object, was used to 
compute deviation z-scores for each motif by comparing the number 
of fragments that map to peaks containing the motif to the expected 
number of fragments in a background peak set that accounts for con-
founding factors such as GC content bias, PCR amplification and Tn5 
tagmentation. Then, we used the getPositions, addGroupCoverages and 
getFootprints functions to perform transcription factor footprinting 
analysis with pseudobulk aggregates of cells in the same cell type. In the 
plotFootprints function, ArchR performs normalization by subtracting 
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the Tn5 bias from the footprinting signal. We plotted the footprinting 
results for the transcription factors EGR2 and TFAP4 comparing PTSD 
and CON in EXNs and INs, respectively.

Transcription factor gene-regulatory network construction
Transcription factor–CRE–gene links were created for each cell type with 
DEG (up or down) and PTSD GWAS gene (true or false) status indicated 
for each gene. We created GRNs (gene regulatory networks) using EXN 
transcription factor–CRE–gene links and IN transcription factor–CRE–
gene links using three highly enriched transcription factors in each cell 
type. We used the R package igraph (v1.2.6) to plot the GRN, showing 
transcription factor-to-target gene links and overlaying additional infor-
mation such as whether the target gene is a DEG or PTSD GWAS gene. For 
the GRNs, we used correlation cut-offs of 0.7 and 0.6 for EXNs and INs, 
respectively, for visualization purposes. For the EXN GRN, we indicated 
all genes that overlapped with the iPS cell DEGs for EGR2 and SMARCC1 
in pink. Across all transcription factor–CRE–gene linkage analyses, we 
used the FDR value of the transcription factor–CRE linkage as a way to 
test multiple comparisons and indicate statistical significance.

Estimating GWAS enrichment using ATAC and Multiome peaks
To estimate heritability of various complex traits, we used LDSC 
(v1.0.1)72. GWAS summary statistics for PTSD-related traits (tota lPCL, 
case–control, re-experiencing, avoidance and hyperarousal), other 
psychiatric traits (schizophrenia, MVP depression, Alzheimer’s dis-
ease and alcoholism) and non-psychiatric traits (irritable bowel dis-
ease, diabetes, height and education) were correctly formatted with 
munge_sumstats.py and lifted to hg38 coordinates using UCSC liftover. 
Cell-type-specific peaks were formatted for LDSC using make_annota-
tion.py, and linkage disequilibruim scores were computed for each set 
using ldsc.py. Benjamini–Hochberg multiple-testing correction was 
applied to the enrichment P values. We compared the results using 
single-cell peaks from snATAC-seq or snMultiome with the bulk bCREs, 
and saw enhanced enrichment using single-cell data.

GWAS fine-mapping
For PTSD GWAS loci screening, we first identified risk loci from two 
previous PTSD GWAS5,7. We selected a neighbourhood of around 1–2 Mb 
that included the MVP-lead SNP. After fine-mapping these loci using  
the total PCL and re-experiencing summary statistics, we identified 
eight that fell within cell-type-specific EXN and IN CREs. For peak enrich-
ment scores as prior weights, we performed genetic fine-mapping 
with the sum of single-effect (SuSiE, v0.12.35) regression model73 to 
infer risk variants with epigenetic information from our snATAC peaks, 
such that the prior can improve the accuracy of detecting causal vari-
ants74. For SNPs within ATAC peaks, we used the peak enrichment scores  
(−log10P), which indicate the strength of each peak, as the prior weights 
for SuSiE to prioritize SNPs with strong ATAC signals. The enrichment 
scores in the union peakset ranged from 1 to 507 with a mean of 19.7 
and standard deviation of 28.3. To reduce the effects of highly enriched 
peaks, we set the enrichment score values above the 95th percentile to 
the value of the 95th percentile (67.49) and rescaled the scores to 1–100. 
For SNPs outside ATAC peaks, we set the prior weights to 0.1. We used 
CREs (peak-to-gene correlation > 0.4 and FDR < 0.05) to perform fine-
mapping in SuSiE. For fine-mapping with SuSie, we performed SuSiE 
regression with the susie_rss function using the PTSD GWAS summary 
statistics (total PCL and re-experiencing)5. SuSiE calculates the PIP, 
the probability for a given SNP being causally associated with the trait 
of interest, for each variant. The linkage disequilibrium information 
was derived from the 503 European samples of the 1000 Genomes 
Project (1KG). For input files, we used the 1KG Phase 3 dataset74 as the 
reference panel for our analysis. This dataset can be accessed via the 
Resources section on the PLINK 2.0 website (Resources — PLINK 2.0 
(cog-genomics.org)). We selected the European samples based on 
the super-population information provided by 1KG and excluded all 

duplicate and ambiguous SNPs. We applied quality control to the 1KG 
data with European ancestry using PLINK75. To be more specific, we 
only included SNPs with a 99% genotyping rate and the minor allele fre-
quency no less than 0.005. We also excluded samples with more than 5% 
missing genotypes and markers that failed to pass the Hardy–Weinberg 
test. The final reference panel included 503 non-overlapping European 
samples, genotyped at 8,190,311 SNPs. To obtain the coordinates for 
risk SNPs, we turned to the UCSC Genome Browser76 and focused on 
the human genome version GRCh38/hg38. For fine-mapping figures, 
after running SuSie, we integrated all the findings including the ATAC 
signal track, the CRE–gene links that link to the TSS of the risk gene, 
the PIP output values from SuSie, correlation of each variant to the 
lead SNP, and the gene track into the final fine-mapping figure using 
the predetermined regions. We plotted all variants with a PIP > 0.0001, 
highlighted CRE–gene loops for variants with PIP > 0.05, and outlined 
each variant in black if it fell within a CRE. The top two credible SNPs 
and the MVP SNP were labelled. The lead SNP was coloured red, and 
the MVP SNP was coloured purple. The CRE–gene loops were colored 
by their CRE–gene correlation values and by cell type (IN in green, and 
EXN in red). For HiC TAD, for ELFN1, KCNIP4, EGR3 and LRFN5, contact 
domains were found from the NeuN+ Hi-C file77 using the Juicer (v1.6)78 
arrowhead command with parameters r = 10,000 (the resolution of 
the sequencing depth of the Hi-C file) and m = 1,000 (the size of the 
sliding window along the diagonal in which contact domains will be 
found). The TADs highlighted the regions of chromosomal looping in 
the fine-mapping figures.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
snRNA-seq, snATAC and snMultiome count data generated and/
or analysed during the current study are available79 (https://doi.
org/10.5281/zenodo.15186498). The raw data are available through 
a data use agreement with the National PTSD Brain Bank. Interested 
investigators should submit dataset requests to the corresponding 
author and https://www.research.va.gov/programs/tissue_banking/
ptsd/ and reference this paper for more information. Applications 
for the data may be submitted at any time and are reviewed monthly. 
We also downloaded the following public datasets: bulk DLPFC tran-
scriptomic data from PTSD donors9 (https://doi.org/10.1038/s41593-
020-00748-7), single-cell DLPFC transcriptomic data from PTSD 
donors26 (https://doi.org/10.1176/appi.ajp.20220478), bulk-tissue 
bCREs (https://psychscreen.wenglab.org/psychscreen/downloads), 
MVP PTSD GWAS summary statistics (https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001672.v1.p1), the 1KG 
Phase 3 dataset (https://cog-genomics.org), and the NeuN+ Hi-C file 
(https://psychscreen.wenglab.org/psychscreen/downloads). Source 
data are provided with this paper.

Code availability
All code used in this study is freely available online and can be found 
on Zenodo79 (https://doi.org/10.5281/zenodo.15186498) and GitHub 
(https://github.com/mjgirgenti/PTSDsnDLPFC).
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Extended Data Fig. 1 | Table of demographics. Demographic and clinical summary of CON, MDD, and PTSD cohorts for a, 111 RNA/ATAC samples, b, 25 Multiome 
samples, and c, 18 Xenium samples.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cell type canonical markers and transcriptomic cell 
type annotation. UMAP of canonical marker genes across major cell types in  
a, snRNA-seq, b, snATAC-seq, and c, snMultiome. d, Average single nucleus 
gene expression heatmap of canonical cell type marker genes across 14 
subtypes in snRNA-seq. e, Normalized chromatin accessibility profiles of 
canonical cell type marker genes with TSS marked across seven cell types in 
snATAC-seq. f, Circos plot of 61 fine annotation transcriptomic subtypes of 

snRNA-seq. From inner to outer circles: 1) UMAP of snRNA-seq colored by cell 
types, 2) number of cells in each transcriptomic subtype, 3) dot plot of the 
subtype marker, 4) labels of seven cell types, 5) labels of 14 subtype markers, 6) 
labels of 61 fine annotation transcriptomic subtypes. g, Heatmap of average 
gene expression of subtype markers and broader neuronal (excitatory, 
inhibitory) and non-neuronal class markers across transcriptomic subtypes.



Extended Data Fig. 3 | Gene set enrichment of PTSD DEGs. a, Cosine 
similarity heatmap of 14 subtype DEG lists. b, Top BP and MF enrichR GO terms 
of the 1,184 PTSD snDEGs. c, Top occurring DEGs from GO terms in b. d, Top cell 
type-specific BP and MF enrichR GO terms of the PTSD cell type-specific DEGs. 
e, Comparison of snRNA-seq average MAST log2FC values to bulk RNA log2FC 

values (r = 0.69) for PTSD snDEGs. f, Directional consistency of PTSD snDEGs 
with Chatzinakos PTSD genes. Lighter bar represents PTSD snDEGs. Darker bar 
represents overlap with Chatzinakos PTSD genes. g, Directional consistency of 
MDD snDEGs with Chatzinakos MDD genes. Bar represents MDD snDEGs. Dark 
shade represents overlap with Chatzinakos MDD genes.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Systematic comparisons of PTSD versus MDD.  
a, Binary plot of 1,918 MDD snDEGs indicating occurrence of DEG across cell 
types. b, Correlation of snRNA-seq average MAST log2FC values to bulk RNA 
log2FC values (r = 0.72) for MDD snDEGs. c, Heatmap of MAST log2FC values of 
the top MDD snDEGs per cell type (top) and corresponding values from bulk 
RNA-seq (bottom). d, Overlap between PTSD snDEGs and snMDD DEGs across 

cell types. e, RRHO p-value heatmaps showing high enrichment in concordant 
quadrants and lack of enrichment in discordant quadrants between PTSD and 
MDD. f, RRHO odds ratio heatmaps showing high enrichment in concordant 
quadrants and minimal enrichment in discordant quadrants between PTSD and 
MDD. g, Overlap among PTSD, PTSD (+MDD), and PTSD (-MDD) vs CON up- and 
down-regulated DEGs across cell types.
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Extended Data Fig. 5 | Xenium spatial transcriptomic analysis. a, Total and 
unique transcripts per cell for scXenium (top) and per nucleus for snXenium 
(bottom). b, Cell type spatial co-localization within the tissue section. c, CON 
and PTSD slides showing nuclei annotated by seven canonical cell types (top) 
and corresponding H&E images (bottom). Scale bar=1 mm. d, Correlation of 
MAST log2FC values between snXenium and snRNA for overlapping DEGs 
across all cell types (r = 0.62). e, Correlation of MAST log2FC values between 
scXenium and snRNA for overlapping DEGs across all cell types (r = 0.61). f, IN 
PTSD vs CON volcano plot of snXenium MAST results. DEGs that are labeled and 

outlined in black overlap with snRNA-seq MAST DEGs. g, CXCL14 log- 
normalized counts comparing CON and PTSD across cell types. h, CON slide 
showing individual CXCL14 transcripts in dark green and nuclei with their 
corresponding cell type colors in a lighter shade (IN = light green). Scale 
bar=1 mm. CON inset zooms 4X to show individual IN expression. i, PTSD slide 
showing individual CXCL14 transcripts in dark green and nuclei with their 
corresponding cell type colors in a lighter shade (IN = light green). Scale 
bar=1 mm. PTSD inset zooms 4X to show individual IN expression).



Extended Data Fig. 6 | Cell-to-cell communication differences between 
PTSD and MDD. a, Circle plots showing the differential sender signaling of 
PTSD versus CON and MDD versus CON interactions. Note differences in 
sending communication from the MG cell type. b, Heatmaps showing the 
differential pathway interactions from the MG cell type to all receiving cell 
types. Note the highest differences found in the SPP1 pathway between PTSD 
and MDD. c, Schematic of animal behavior experimental timeline. d, Daily 
weight changes in control versus SPS animals. SPS occurred on Day 0. SPS leads 
to significant weight loss in mice compared to control. 2-way ANOVA with 

Bonferroni’s multiple comparison tests. Control versus SPS group: p = 0.01, 
Day 1: p = 0.005, Day 2: p = 0.02. ##p < 0.01, #p < 0.05. Control: n = 15 samples, 
SPS: n = 16 samples. Error bar = standard error of the mean (SEM). e, Difference 
in information flow, defined by signaling summed across all sending and 
receiving cell types, of the top 15 most different neurocircuit signals between 
PTSD and CON individuals. Red bars indicate increased signaling strength, 
while blue bars indicate decreased signaling strength in PTSD samples  
(P < 0.1). f, Circos plots of Glu-GRM5, CRH-CRHR1, CORT-SSTR2, and Glu-GRM7 
communication signals between PTSD and CON individuals.
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Extended Data Fig. 7 | ATAC peak features in PTSD prefrontal cortex. 
 a, Marker peak heatmap showing high degree of cell type specificity 
(log2FC > 0.7, FDR < 0.01) in snATAC peaks. b, Jaccard similarity matrix showing 
the degree of overlap in peaks across cell types ranging from 0 (no overlap)  

to 1 (complete overlap). EXN and IN, and OLG and OPC share high similarity. 
 c, Percentage overlap of snATAC peaks across cell types and bulk peaks at 
different overlap thresholds. d, Overlap of CLG-DEGs across cell types. EXN  
and IN and END, AST, and MG have high overlap.



Extended Data Fig. 8 | Multiome peak features in PTSD prefrontal cortex. 
 a, snMultiome peak-to-gene links side by side heatmap. b, Stacked barplot 
showing number of peaks in each cell type (7) separated by genomic feature.  
c, Stacked barplot showing number of peaks in each subtype (14) separated by 
genomic category. d, Percentage overlap of snMultiome peaks across cell  
types and bulk peaks at different overlap thresholds. e, Percentage overlap  

of snMultiome peaks across subtypes and bulk peaks at different overlap 
thresholds. f, Jaccard similarity matrix showing the degree of overlap of 
snMultiome cell type peaks. g, Jaccard similarity matrix showing the degree  
of overlap of snMultiome subtype peaks. h, Overlap ratio of snATAC and 
snMultiome cell type peaks using a minimum overlap of one nucleotide.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Cell type-specific TF binding regulation in PTSD.  
a, TF motif enrichment heatmap of highly enriched TFs for each cell type.  
b, UMAP of EGR2 chromVAR deviation scores. c, Tn5 bias-subtracted TF 
footprinting for EGR2 in EXN CON (gray) and EXN PTSD cells (red). The TF motif 
logo is shown above the footprint. d, TF regulatory network of EXN TF-CRE-
Gene links for TFs EGR2, SMARCC1, and TAL2. Peak-to-gene correlation>0.7 was 
employed in generating the network. TFs in dark red, upregulated DEGs in red, 

downregulated DEGs in blue, PTSD GWAS genes in yellow, and iPSC DEGs in 
pink. e, Matrix showing overlap of DEGs regulated by the top 20 enriched TFs in 
EXN. More than half of the TFs are IEGs. f, UMAP of TFAP4 chromVAR deviation 
scores. g, Tn5 bias-subtracted TF footprinting for TFAP4 in IN CON cells (gray) 
and IN PTSD cells (red). The TF motif logo is shown above the footprint. h, TF 
regulatory network of IN TF-CRE-Gene links for TFs TFAP4, WT1, and ZNF238. 
Peak-to-gene correlation>0.6 was employed in generating the network.
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Extended Data Fig. 10 | PTSD risk loci fine-mapping. a, Lollipop plot 
showing LDSC enrichment of various GWAS traits comparing snATAC  
peaks (colored dots) versus bCREs (gray dots). The cell type with the highest 
enrichment for the trait is shown with its corresponding color. b, PIP values 
versus negative log-transformed GWAS p-values of SNPs that lie within CREs. 
c, Cis-regulatory architecture for OPCML in IN for re-experiencing GWAS.  
d, Cis-regulatory architecture for EGR3 in IN for TotalPCL. MVP SNP 
rs10105545 (PIP = 0.017) has high LD with top credible SNP rs1059592 

(R2 = 0.92). e, Cis-regulatory architecture for CAMKV in EXN for re-experiencing. 
MVP SNP rs2777888 (PIP = 0.012) has high LD with top credible SNP rs9821675 
(R2 = 0.99). f, Cis-regulatory architecture for CAMKV in EXN for TotalPCL. 
MVP SNP rs2777888 (PIP = 0.002) has high LD with second credible SNP 
rs11716575 (R2 = 0.81). g, Cis-regulatory architecture for TCF4 in IN for  
re-experiencing. MVP SNP rs35371867 (PIP = 0.100) has moderate LD with 
second credible SNP rs35371867 (R2 = 0.32). h, Cis-regulatory architecture 
for CRHR1 in IN for TotalPCL.
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