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Abstract
Motivation: Recent initiatives for federal grant transparency allow direct knowledge extraction from large volumes of grant texts, 
serving as a powerful alternative to traditional surveys. However, its computational modeling is challenging as grants are usually 
multifaceted with constantly-evolving topics.
Methods: We propose Turtling, a time-aware neural topic model with three unique characteristics. Firstly, Turtling employs pre-
trained biomedical word embedding to extract research topics. Secondly, it leverages a probabilistic time-series model to allow smooth 
and coherent topic evolution. Lastly, Turtling leverages additional topic diversity loss and funding institute classification loss to 
improve topic quality and facilitate funding institute prediction.
Results: We apply Turtling on publicly available NIH grant text and show that it significantly outperforms other methods on topic 
quality metrics. We also demonstrate that Turtling can provide insights into research topic evolution by detecting topic trends across 
decades. In summary, Turtling may be a valuable tool for grant text analysis.
Availability: Turtling is freely available as an open-source software at https://github.com/aicb-ZhangLabs/Turtling 
Contact: zhang.jing@uci.edu 
Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction 
Advances in machine learning algorithms and the recent initiatives for 
federal grant transparency have allowed direct knowledge extraction from 
large volumes of publicly-available online databases, potentially serving 
as a powerful alternative to traditional survey-based technologies. As a 
result, it is now possible to directly obtain quantitative and less biased 
grant text information that can broadly benefit scientific investigators, 
policy analysts, and funding agencies. Here, we aim to comprehensively 
navigate the funding landscape by exploring 466,730 public grant texts 
over the past 36 years from the National Institute of Health (NIH), the 
world's largest funding agency for biomedical research.

Computational modeling on NIH grant text data can be challenging 
for two reasons. First, NIH grant texts are usually multifaceted because 
they can be individually or jointly awarded from twenty-seven distinct 
Institutes/Centers (ICs) with overlapping priorities. Second, research 
topics have evolved quickly over the past decades as new technologies or 
health challenges have appeared (e.g., HIV and Covid pandemics in the 
1980s and 2020s).

Previous researchers have leveraged topic models on NIH grant text 
to discover patterns reflecting latent research topics (Talley et al., 2011). 
Topics learned from their methods are robustly correlated with specific 

NIH institutes, providing a basis for the discovery of interrelationships 
among biomedical concepts from NIH grant abstract documents. Later on, 
other researchers have used a labeled topic model to take the institute 
category information into consideration (Park et al., 2016). Their work 
showed how text classification techniques can be used to analyze funding 
patterns of a specific institute. However, two problems limited the 
application of their models. First, training NIH data from scratch cannot 
capture rare word distributions. Second, while research topics have 
changed dramatically over the past twenty years, authors there used a 
static model that cannot capture temporal evolution information of 
research topics. Recently, some new topic modeling methods have been 
developed to capture topic trends in the general NLP area. (Dieng et al., 
2019, 2020; Blei and Lafferty, 2006; Blei et al., 2003). Specifically, they 
use pre-trained word embeddings to improve their topic quality and 
probabilistic time series to allow topics to vary smoothly over time. 
Nevertheless, it is challenging to directly apply them to NIH grant data 
due to its rare biomedical terminologies and complicated institute category 
information. 

To tackle these challenges, we propose Turtling, a time-aware neural 
topic model with multi-task losses, which encourages diverse topics and 
IC classification. Turtling has three unique characteristics compared with 
existing models. Firstly, Turtling extracts topics from biomedical word 
embedding space, lessening the word scarcity problem. Secondly, it 
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leverages a probabilistic time-series model, which allows smooth and 
coherent topic evolution. Lastly, Turtling leverages additional topic 
diversity loss and IC classification loss to further improve extracted topic 
quality and topic correlation with specific NIH institutes. The losses above 
contribute to the extraction of diverse and high-quality topics that contain 
IC-specific information.

To verify its applicability, we have collected the Grant dataset, 
which includes 466,730 grant abstract documents and their corresponding 
ICs across 36 years (1985 to 2020). We tested the performance of Turtling 
against baseline methods on the extracted topic quality and IC prediction 
accuracy using the Grant dataset. Our experimental results showed that 
our method significantly outperformed baselines on topic coherence, 
diversity, and perplexity. Furthermore, we used our model to detect the 
topic trend across decades, providing valuable information on the 
evolution of research interests in the biomedical field. We then leveraged 
the topic proportions of a grant to predict its best-suited IC for success. 
We also found that grants from the same IC share similar topics in our 
visualizations as their topic proportion vectors were closer to each other, 
allowing for more interpretable predictions of IC selection given the grant 
abstract. In summary, our method provides an unbiased way for retrieving 
meaningful topics in NIH grants and its relation with NIH institutes and 
centers.

2 Methods

2.1 Dataset
We collect 466,730 grant abstract documents from the NIH RePORTER 
website offered by the NIH1 to construct the Grant dataset. We download 
the raw text data from the RePORTER website updated on July 26th, 2022. 
The documents are across 36 years from 1985 to 2020. Each document is 
submitted to a certain Institute or Center (IC). Figure 1 shows the number 
of new grants and new ICs every year. Among all ICs in our dataset, there 
are 62 that have been active for more than 10 years. As many grants 
receive funding for multiple years, we only include grants that received 
support for the first time.

We preprocess the Grant dataset by filtering out stop words and 
words with extremely high or low frequency. Specifically, we remove 
words that have a high frequency, appearing in more than 80% of a 
document, as well as words that have a frequency of less than 10 times in 
a document. We then use the Wordnet lemmatizer in NLTK to get the stem 
for each word (Bird and Loper, 2004). After preprocessing, we further 

1 https://reporter.nih.gov/ 

remove documents that contain less than 10 words. In total, we obtained a 
vocabulary with 35,108 distinct words. 

2.2 Turtling’s Topic modeling with word embeddings 

As shown in Figure. 2, Turtling adopts recent advances in probabilistic 
generative models of documents, such as Latent Dirichlet Allocation 
(LDA) and word embeddings (Dieng et al., 2020; Blei et al., 2003). 
Specifically, Turtling leverages vectorized word embeddings to calculate 
the word distribution for each topic and assumes that the semantically 
related word embeddings and topic embeddings are closer to each other in 
the embedding space (Mikolov, Sutskever, et al., 2013; Mikolov, Chen, et 
al., 2013).

Table 1. List of Symbols.  We list the important symbols and notations 
used in this paper and briefly describe each symbol.

Symbol Remark

dtj BOW vector for the j-th document in year 𝑡
D𝑡 Document dataset at time t
𝜃𝑑 Topic Proportion of document d
𝛽𝑘 Word distribution for topic k
𝛼𝑘 Embedding for topic k
𝜂𝑡 Prior of topic proportion at time t

𝑧𝑑𝑛 Topic assignment for n-th word in document d
𝑤𝑑𝑛 n-th word in document d
𝐶𝑎𝑡 Categorical distribution
𝐿𝑁 Logistic normal distribution

As shown in Table 1, we use a vector  to denote the bag of 𝑑𝑡𝑗 ∈ 𝑅𝑉

words (BOW) representation for the j-th document in year , where  is 𝑡 𝑉
the size of the vocabulary and  represents a specific year. We then use 𝑡 𝐷𝑡

to denote the concatenation of all  vectors , ∈ 𝑅𝑁𝑡 × 𝑉 𝑁𝑡 𝑑𝑡𝑗 (1 ≤ 𝑗 ≤ 𝑁𝑡)
where  is the number of grants for year . Therefore,  is a matrix that 𝑁𝑡 𝑡 𝐷𝑡

contains BOW information for all of the grant documents in year . We 𝑡
then use  to denote our complete dataset, where T stands 𝐷𝑡 = {𝐷1,𝐷2,…𝐷𝑇}
for the total number of years. For each BOW vector , we assign a 𝑑 ∈ 𝐷𝑡

corresponding label  to the document based on the IC it 𝑦𝑑 ∈ {1, 2…𝑀𝑡}
was submitted to.  denotes the total number of ICs at a single year .𝑀𝑡 𝑡

We first consider the modeling process on a single year dataset. We 
define K topics , where each topic is a word distribution 𝛽𝑖(1 ≤ 𝑘 ≤ 𝐾)
over the vocabulary, and K topic embeddings  with the 𝛼𝑘(1 ≤ 𝑘 ≤ 𝐾)
same dimension as word embeddings. The word embedding  𝜌 ∈ 𝑅𝐿 × 𝑉

contains all of the words in the vocabulary, and L is the dimension of the 
embedding. We then calculate word distribution for each topic in equation 
(1) below.

𝛽𝑘 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜌𝑇𝛼𝑘) (1 ≤ 𝑘 ≤ 𝐾)#(1)

where  In this way, it calculates the generative 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒

𝑧𝑖

∑
𝑗𝑒

𝑧𝑗
 .

probability for each word in proportion to the cosine similarity between 
each word embedding and the topic embedding. In the document 
generation process, we sample each word from its corresponding topic 
using this generative probability.

Figure 1.  Statistics of the Grant dataset. Left panel shows the number 
of new grants every year from 1985 to 2020, and right panel shows the 
number of ICs every year.
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Then, we further consider a topic proportion vector  with 𝜃𝑑

dimension K for each document, and each element of  represents the 𝜃𝑑

probability of that topic to appear in document d. Formally, the generative 
process is as follows:

 Sample topic proportion 𝜃𝑑 ~ 𝐿𝑁(0, 𝐼)
 For n-th word  in document d 𝑤𝑑𝑛

(a) Sample topic assignment  𝑧𝑑𝑛~𝐶𝑎𝑡(𝜃𝑑)(1 ≤ 𝑧𝑑𝑛 ≤ 𝐾)
Sample word 𝑤𝑑𝑛~𝐶𝑎𝑡(𝛽𝑧𝑑𝑛)

where LN denotes the logistic normal distribution and Cat denotes the 
categorical distribution (Blei and Lafferty, 2007).  is an integer that 𝑧𝑑𝑛

takes value from 1 to K. 

2.3 Time-aware topic modeling 

We then extend the method mentioned above to evolve dynamically on a 
multi-year dataset by allowing topics to vary smoothly over time. Within 
this model, the number of topics, denoted as K, remains consistent 
throughout all years, though the topic embeddings for each year exhibit 
slight variations compared to those from preceding years. Formally, for 
each time point t, Turtling defines a time specific topic embedding . 𝛼𝑡

𝑘 ∈ 𝑅𝐿

Similarly, it calculates the time specific word distribution  for each 𝛽𝑡
𝑘 ∈ 𝑅𝑉

topic with the following formula:

𝛽𝑡
𝑘 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜌𝑇𝛼𝑡

𝑘) (1 ≤ 𝑘 ≤ 𝐾)#(2)

Different from the method in 2.2, the time specific topic distribution 
for each document  is generated from a distribution that also evolves 𝜃𝑡

𝑑

over time:

𝜃𝑡
𝑑 ~ 𝐿𝑁(𝜂𝑡, 𝜖2𝐼)#(3)

where  is a hyperparameter of the model and  is a latent variable that 𝜖 𝜂𝑡

defines the prior mean of topic proportion at a specific time t. We assume 

that every  is a vector with dimension K generated by a random walk 𝜂𝑡

starting from  with Gaussian noise , so the conditional distribution 𝜂𝑡 ― 1 𝛿
of  given  is as follows: 𝜂𝑡 𝜂𝑡 ― 1

𝑝(𝜂𝑡│𝜂𝑡 ― 1) = 𝐿𝑁(𝜂𝑡 ― 1, 𝛿2𝐼)#(4)

Similarly, we assume the topic representation also evolves by 
random walk with Gaussian noise :𝛾

𝑝(𝛼𝑡
𝑘|𝛼𝑡 ― 1

𝑘 ) = 𝐿𝑁(𝛼𝑡 ― 1
𝑘 , 𝛾2𝐼)#(5)

At time step , we assume both  and  follow Gaussian 𝑡 = 0 𝛼0
𝑘 𝜂0

distribution . Thus, the generative process of Turtling can be 𝑁(0, 𝐼)
summarized as:

1. Sample initial topic embeddings 𝛼0
𝑘 ~ 𝑁(0, 𝐼)

2. Sample initial topic proportion mean 𝜂0 ~ 𝑁(0, 𝐼)
3. For time step t= 1, 2…T:

(a) Sample topic embeddings  𝛼𝑡
𝑘 ~ 𝐿𝑁(𝛼𝑡 ― 1

𝑘 , 𝛾2𝐼)
(b) Sample topic proportion mean 𝜂𝑡 ~ 𝐿𝑁(𝜂𝑡 ― 1, 𝛿2𝐼)
(c) Calculate 𝛽𝑡

𝑘 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜌𝑇𝛼𝑡
𝑘)

4. For each document  :𝑑 ∈ 𝐷𝑡

(a) Sample topic proportion 𝜃𝑑 ~ 𝐿𝑁(𝜂𝑡, 𝜖𝐼2)
(b) For each word  in document d:𝑤𝑑𝑛

i. Sample topic assignment 𝑧𝑑𝑛 ~ 𝐶𝑎𝑡(𝜃𝑑)
ii. Sample word 𝑤𝑑𝑛 ~ 𝐶𝑎𝑡(𝛽𝑡

z𝑑𝑛)

Since Turtling learns topics in an embedded space, it can assign 
topics to words that do not appear in the training corpus as long as their 
embedding is given. 

2.4 Inference of topic proportion and topic assignment
Given a word  in document d at time t, we then calculate the marginal 𝑤𝑑𝑛

likelihood of  to optimize the parameters. As we do not know the topic 𝑤𝑑𝑛

Figure 2. Flowchart of Turtling. Turtling leverages time-aware graphical topic model to extract high quality topics from grant documents across several 
years. The extracted topics can be used for several downstream tasks such as topic trend analysis and IC classification.
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proportion  and topic assignment  in the generative process, we have 𝜃𝑑 𝑧𝑑𝑛

to marginalize both latent variables. We first marginalize the topic 
proportion , so the log likelihood  is defined as:𝜃𝑑 𝑝(𝑤𝑑𝑛│𝛼𝑡, 𝜌)

𝑝(𝑤𝑑𝑛│𝛼𝑡, 𝜌) = ∫𝑝(𝜃𝑑)𝑝(𝑤𝑑𝑛│𝜃𝑑, 𝛼𝑡, 𝜌)𝑑𝜃𝑑#(6)

We then marginalize topic assignment  to compute the 𝑧𝑑𝑛

conditional distribution :𝑝(𝑤𝑑𝑛|𝜃𝑑, 𝛼𝑡, 𝜌)

𝑝(𝑤𝑑𝑛│𝜃𝑑, 𝛼𝑡, 𝜌) =
𝐾∑

𝑘 = 1
𝑝(𝑧𝑑𝑛 = 𝑘)𝑝(𝑤𝑑𝑛│𝛽𝑡

𝑧𝑑𝑛)#(7)

After getting the log likelihood for each word, we then get the log 
likelihood loss function over parameter  and :𝛼𝑡 𝜌

𝐿𝑙𝑘(𝛼, 𝜌) =
𝑇∑

𝑡 = 1

∑
𝑑 ∈ 𝐷𝑡

∑
𝑤 ∈ 𝑑

log (𝑝(𝑤│𝛼𝑡, 𝜌))#(8)

We use amortized variational inference to approximate the posterior 
distribution of topic proportion  for document  (Kingma and Welling, 𝜃𝑑 𝑑
2013). Particularly, we use neural networks  and  that take document  𝜇 𝜃 𝑑
as input to predict the mean and variance of a Gaussian distribution. This 
Gaussian distribution is then used as the approximated posterior 
distribution of . Formally:𝜃𝑑

𝑞𝜈(𝜃𝑑│𝑑) = 𝐿𝑁(𝜇𝜈(𝐷), 𝜎𝜈(𝐷))#(9) 

where  denotes the parameters of the inference neural networks. We 𝜈
leveraged a recurrent neural network as the inference model q in our 
implementation. This approximate distribution can be leveraged to 
compute the evidence lower bound (ELBO) of the marginal log likelihood. 
ELBO is a function of the generative model parameters  and the 𝛼, 𝜌
variational parameters :𝜈

𝐿𝐸𝐿𝐵𝑂(𝛼, 𝜌, 𝜈) =
𝑇∑

𝑡 = 1

∑
𝑑 ∈ 𝐷𝑡

( ∑
𝑤 ∈ 𝑑

𝐸𝑞[log (𝑝(𝑤│𝛼𝑡, 𝜌))] ― 𝐾𝐿(𝑞𝜈|𝑝(𝜃𝑑)))#(10)

We then optimize  with regard to parameters  using 𝐿𝐸𝐿𝐵𝑂 (𝛼, 𝜌,𝜈 )
minibatch Monte Carlo approximation.  

2.5 Topic diversity loss
Inspired by the multi-task learning method, we optimize two 

additional loss terms mentioned in Section 2.5 and Section 2.6 (Ruder, 
2017). We propose a topic diversity loss to make extracted topics more 
informative. This loss encourages each topic representation to be far away 
from each other in the training process. Formally,

𝐿𝑇𝐷 =
𝑇∑

𝑡 = 1

∑
1 ≤ 𝑖,𝑗 ≤ 𝑘

𝐷𝑖𝑠(𝛼𝑡
𝑖, 𝛼𝑡

𝑗)#(11)

where  can be any distance metric. Specifically, we use 𝐷𝑖𝑠(𝑥1, 𝑥2)
Euclidean distance in our model. 

2.6 IC classification loss
We propose an IC classification loss to let inferenced topic 

proportions of each document contain information for IC prediction. In the 

training stage, a fully connected neural network  takes the inferenced 𝐹(𝑥)
topic proportion  as the input and outputs a probability for each IC 𝜃𝑑

regarding which grant document might belong to it:
 

𝐿𝐼𝐶 =
𝑇∑

𝑡 = 1

∑
𝑑 ∈ 𝐷𝑡

𝐶𝐸(𝐹(𝜃𝑑), 𝑦𝑑)#(12)

where  represents the cross-entropy loss. We then calculate the final 𝐶𝐸
loss function by adding up all three losses:

𝐿(𝛼, 𝜌, 𝜈) = 𝐿𝐸𝐿𝐵𝑂 + 𝜆1𝐿𝑇𝐷 + 𝜆2𝐿𝐼𝐶#(13)
We optimize this loss function with gradient descent to compute the 
optimal topic representations , word embeddings , and variational 𝛼 𝜌
parameters .𝜈

2.7 Evaluation Methods
We expect a good topic model to generate topics that are interpretable and 
informative. Moreover, these topics should be capable of reconstructing 
the original word distribution. Therefore, we evaluate the performance of 
our topic model using metrics including topic coherence, topic diversity 
and test perplexity (Mimno et al., 2011; Rosen-Zvi et al., 2004).

Topic coherence (TC) measures the similarity of words drawn from 
a topic, indicating whether the topic is semantically interpretable. 
Formally, we compute TC for a topic by selecting the top-p words from 
the topic and averaging over the similarity between any pair of words:

𝑇𝐶 =
1

𝑝2
∑

1 ≤ 𝑖,𝑗 ≤ 𝑝
𝑓(𝑤𝑖, 𝑤𝑗)#(14)

where  are drawn from the top-p words of a topic, and  is a 𝑤𝑖, 𝑤𝑗 𝑓
similarity measure. In this paper, we choose 3 different functions for : 𝑓
pairwise comparison bases on context window (CA), Fitelson’s 
confirmation measure (CP) and normalized pointwise mutual information 
(NPMI) (Aletras and Stevenson, 2013; Röder et al., 2015). 

Topic diversity (TD) penalizes the repetitive or similar topics by 
calculating the repetitions of topic words. We use the proportion of unique 
top-p words in topics to compute TD in our paper.  Formally,

𝑇𝐷 =
𝑁𝑢

𝐾 × 𝑝
#(15)

where  is the number of topics and  is the number of unique words.𝐾 𝑁𝑢

Perplexity measures the likelihood of a topic model on a held-out test 
dataset.

2.8 Experimental Settings
We utilize BioWordVec as the word embeddings for our method (Zhang 
et al., 2019).  BioWordVec encompasses 200-dimensional word 
embeddings trained on biomedical text with a biomedical controlled 
vocabulary, which are more suitable to NIH grant abstract text. Note that 
the parameters of the word embedding layer were also updated during the 
training process.

We use 85% of the Grant dataset for training, 5% for validation and 
10% for testing. For the purpose of topic quality evaluation and trend 
analysis, we trained Turtling with a topic number of K=50. We set the 
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learning rate of Turtling to be 0.001 with a small weight decay. We set the 
batch size to be 1024 and the dropout rate to be 0.1. We set the 
hyperparameters  and  in equation (13) to be 1 and 0.5. We set the 𝜆1 𝜆2

hyperparameters  and  in equation (3), (4), and (5) to be 0.01. We 𝜖,𝛿 𝛾
trained our model for 500 epochs on an Nvidia RTX 3090 GPU. We tested 
different choices of hyperparameters  and  to select the best value 𝐾, 𝜖, 𝛿, 𝛾
above. Results for hyperparameters tuning are shown in Supplementary 
Figure 1.

In Section 3.4, we leveraged Turtling for IC classification. 
Specifically, we leveraged the topic proportion vector as the input feature 
to a random forest classifier, which is lighter and more interpretable 
compared to models using entire documents as input. For a fair 
comparison, we applied the PCA method to the bag-of-words 
representation of each document with the same output dimension as the 
number of topics. We also trained a DETM model and extracted topic 
proportions as input features. Here, we selected 20 as the number of topics. 
As sometimes we expected the model to predict several possible IC 
selections, we computed the top-5 accuracy as well as the top-1 accuracy. 
We also tested the performance of a neural network classifier instead of a 
random forest classifier and the results are shown in Supplementary 
Figure 2.

3 Results

Here, we applied Turtling on the Grant dataset and evaluated its 
performance on the extracted topic quality and IC classification accuracy, 
as discussed in the following sections. In Section 3.1, we evaluate the 
performance of our model and compare it with baseline methods on 
several topic quality metrics, demonstrating that Turtling improves the 
quality of extracted topics. In Section 3.2, we leverage the topics extracted 
by Turtling from the Grant dataset to analyze the research topic trend in 

recent years. In Section 3.3, we create a topic heatmap and the topic 
hierarchy to intuitively show the correlation between extracted topics. In 
Section 3.4, we use the topic proportions as an input feature to predict IC 
labels on the test dataset, indicating that topics extracted by Turtling are 
strongly correlated with the selection of NIH institutes.

3.1 Turtling improves topic quality from NIH grant text
Table 2. Topic quality results.  We compared the performance of our 
model with several baseline topic models on topic coherence and topic 
divergence.

Method CA CP NPMI TD Perplexity

  ETM 0.13 0.17 0.015 0.82 2986.8
  DETM 0.10 -0.2 0 0.52 3617.9
  Turtling 0.11 0.15 0.023 0.86 3120.7

We applied Turtling on the Grant dataset and benchmarked its 
performance from three different aspects. First, we compared the baseline 
model DETM (Dieng et al., 2019) and our model using topic coherence 
(CA, CP and NPMI), topic diversity (TD) and tested perplexity described 
in detail in Section 2.7. We also evaluated an ETM model on one year of 
data without time information (Dieng et al., 2020). As shown in Table 2, 
Turtling outperformed DETM on all metrics, especially in TD and CP. 
Furthermore, Turtling achieved comparable topic quality results with the 
static topic modeling method ETM. Note that ETM was evaluated on a 
single-year dataset which is much smaller than the complete dataset the 
other two methods used, as ETM cannot capture the dynamic evolution of 
topics. We also compared Turtling with a non-generative topic modeling 

Figure 3. Wordcloud trend and keywords proportion trend for 4 topics across decades. For each topic, we selected 4 keywords and normalize 
their generative probability for each keyword. We then plot the normalized probability in each year from 1985 to 2020. We also select 4 specific years 
to create the wordcloud according to the generative probability of each topic.
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method, BERTopic (Grootendorst, 2022). Results are shown in 
Supplementary Table 1 and Turtling also achieved competitive results 
on topic coherence and topic diversity. 

3.2 Turtling highlights dynamic research topic changes 
over the past decades
As shown in the right part of Figure 3, we visualized the generative 
probability for some words with high generative probability in four 
example topics from 1985 to 2020. Note that in this plot, we normalized 
the generative probability for each keyword by setting the generative 
probability of this word in 1985 as 1 so that we can focus on the 
developing trend for each keyword across different years. 

First, we observed clear trends of research topic and word 
distribution across years from our Turtling results. For instance, ‘immune’ 
and ‘vaccine’ (topic 1) related research has been increasingly attracting 
research attention within topic 1 since 1985 as shown in Figure 3(a-2). 
Furthermore, within topic 2, breast cancer is one of the top increasing 
words, indicating significantly expanded funding opportunities in the past 
twenty years under this topic, as shown in Figure 3(b-2). Similarly, 
mitochondrial and brain-related also research topics demonstrated a 
noticeable popularity gain in recent years. We further show the 
evolutionary trend of each topic of a 20-topic Turtling model in 
Supplementary Figure 3.

Next, we showed the temporal evolution of example words for 
biomedical research topics. For each of the most popular topics mentioned 
above, we listed some examples of top words in 1985, 1995, 2005, and 
2015. To intuitively show the distribution of each word, we generated 
wordcloud for each topic at different time points. In wordcloud plots, 
larger fonts of words represent a higher generative probability of that 
word. The visualization results are shown in the left part of Figure 3.

Furthermore, we observed the keywords for each topic from the 
wordcloud across years. In 1985, ‘blood’ was a major concern in topic 3 
which contains vascular related research, but ‘cardiac’ had been more 
popular since 1995. We also inferred the main topic name for each plot 
according to the top words in that topic. For example, given ‘antibody’, 
‘vaccine’, and ‘virus’ in Figure 3(a-1), we can infer that the research field 
for this topic is likely to be ‘immune’. 

3.3 Turtling extracts hierarchy research topics 
relationships from Grant text
Next, we aim to explore the sub-fields of extracted research topics by 
examining connections of models trained with different topic numbers. As 
shown in Figure 4, we trained Turtling models with 5, 10, and 20 topics 
on the same collected grant text data. As a result, topics in the 5-topic 
model can be interpreted as broad research areas, while the sub-fields can 
be represented by topics in the 10- and 20-topic models. Consequently, the 
broad research area and subfield connections can be directly measured by 
the  similarities of topic embeddings from different models.𝐿2

We found that topic 2 in the 5-topic model is highly enriched in 
“immune” terminologies (red circle in Figure 4a, and Figure 4b). We 
explored its most closely associated sub-fields by calculating its most 
closely relevant topics in the subsequent 10 and 20-topic models, as shown 
in the heatmaps (Figure 4. 4a-b). For instance, topics 0, 7, and 9 in the 
10-topic model showed the highest correlation with topic 2 in the 5-topic 
model. We can further trace down the higher resolution sub-fields in the 
20 topic models by showing that topics 2 and 6, 3 and 11, and topic 10 are 
most connected to our subtopics in 10 topic models. We further extracted 
the word logo using the word frequencies in each topic and found that 
cancer and viral infection are important sub-fields for the “immune” topic 
we selected (Figure 4c). These results demonstrate that Turtling’s ability 
to extract hierarchical relationships between different research fields in a 
completely data-driven manner.

3.4 Turtling improves IC classification accuracy
Besides traditional research topic extraction tasks, an ideal grant analysis 
model should be able to accurately predict the funding IC and provide 
appropriate suggestions for future grant text data. Therefore, we further 
tested Turtling’s performance on an IC classification task using the topic 
distributions (details in Section 2.8). 

We benchmarked with traditional PCA and DETM models using 
top-1 and top-5 IC assignments. As shown in Figure 5, Turtling achieved 
a 31.6% top-1 accuracy, significantly higher than results from DETM and 
PCA (22.3% and 29.1% top-1 accuracy respectively). Furthermore, 
Turtling achieved a 73.8% top-5 accuracy which outperforms results from 
both methods (59.2% and 72.3% top-5 accuracy respectively). These 
experimental results showed that our method outperformed both of the 
baseline methods, demonstrating the effectiveness of using topic 
proportions generated by our model for IC classification. 

Figure 4. Heatmap and hierarchy trees for grant topics. We trained 
Turtling with 5 topics, 10 topics and 20 topics, and calculated the correlation 
factors between different topics.

Figure 5. IC classification accuracy. We compared top-1 (a) and top-5 
(b) accuracy of IC classification task using DETM, PCA and Turtling.  
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3.5 Turtling separates documents from different ICs
To intuitively demonstrate topic proportion vectors generated by Turtling 
are separable among different ICs, we then visualized the vector of grant 
documents from two ICs in 1990, 2000, 2010, and 2020. We selected 
grants from the ‘National Cancer Institute’ (NCI) and the ‘National 
Institute of Mental Health’ (NIMH), as we expect the topics to vary 
significantly between these two ICs. We used UMAP to generate a 2-
dimensional representation of topic proportion vectors for visualization 
(Mcinnes, 2018). The results are shown in Figure 6. Each dot with a 
certain color represents a document from a specific IC. We can observe 
from the plots that data points with different colors tend to form different 
clusters, indicating that each IC has its own topic preference. 

To sum up, qualitative and quantitative analysis both show that the 
topic proportions generated by Turtling provide a useful and interpretable 
way for IC prediction tasks. 

4 Discussion
In this paper, we developed Turtling, a time-aware topic model to analyze 
documents from a large grant corpus funded by the NIH. We constructed 
the Grant dataset, which contains 466,730 grant abstract documents and 
their corresponding ICs over the past 36 years. Turtling is novel with three 
main characteristics: the combination of biomedical word embedding and 
topic modeling, the time-aware nature of the graphical model, and the 
multi-task loss which includes topic divergence loss and IC classification 
loss. 

We trained our model by optimizing the traditional ELBO as well 
as the topic diversity loss and the IC classification loss. Experimental 
results showed our method outperformed baseline methods on all of the 
metrics. We then leveraged Turtling to extract research topic trends from 
1985 to 2020. We further demonstrated that the topic proportions 
generated by our method can be used for IC prediction.

In the future, we expect several extensions could be easily 
incorporated into our method for further performance improvement. 
Firstly, Turtling leveraged a naïve random forest classifier for IC 
classification, which could be substituted with more advanced deep 
classification models like transformers (Vaswani et al., 2017). Second, 
pre-trained language models (PLMs) have become popular in many NLP 
applications (Devlin et al., 2019; Peters et al., 2018). Previous works have 
applied large PLMs to topic modeling tasks, but none of them considered 
the time-aware topic modeling scenario (Zhang et al., 2022). As PLMs 
trained on biomedical text would contain large amounts of biomedical 
domain information, it may further improve the performance of topic 
models on the Grant dataset (Lee et al., 2020). Lastly, the training process 

of Turtling is time-consuming due to its sequential inference strategy, 
posing a potential need for efficient inference and sampling methods. 

We have implemented Turtling as an open-source software that is 
freely downloadable to the public. With the exponential growth of 
publicly-available grant text data, Turtling can be a valuable tool for 
investigators and funding agencies to gain research insights in a 
completely data driven manner.
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