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Abstract
Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation
systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured
information, is convenient for the recommendation. However, most existing GNN models mainly focus on the homogeneous
graph. They cannot characterize heterogeneous and complex data in the recommendation system. Meanwhile, it is
challenging to develop effective methods to mine the heterogeneity and latent correlations in the graph. In this paper, we
adopt Heterogeneous Attributed Network (HAN), which involves different node types as well as rich node attributes, to
model data in the recommendation system. Furthermore, we propose a novel graph neural network-based model to deal with
HAN for Recommendation, called HANRec. In particular, we design a component connecting potential neighbors to explore
the influence among neighbors and provide two different strategies with the attention mechanism to aggregate neighbors’
information. The experimental results on two real-world datasets prove that HANRec outperforms other state-of-the-art
methods.

Keywords Deep learning · Recommendatino system · Heterogeneous attributed network · Graph neural network

1 Introduction

As it becomes more convenient for users to generate data
than before, mass data that appeared on the Internet are no
longer with simple structure but usually with more complex
types and structures. The recommendation system, which
helps users discover items of interest, is attracting increasing
attention, but it is also facing more and more challenges
[1, 2]. Traditional recommendation methods, such as matrix
factorization [3], are designed to explore the user-item
interactions and generate an efficient recommendation.
However, because of calculating each pair of interactions,
they have difficulty processing sparse and high-volume
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data. Furthermore, it is more challenging to deal with
heterogeneous and complex data derived from different
sources [4].

As the data dusers and items in the recommendation sys-
tem can be naturally organized as a graph structure, graph-
based deep learning methods have been applied in recom-
mendation fields [5] and alleviate the enormous amount and
the sparsity problem to some extent. Meanwhile, heteroge-
neous attributed network (HAN) [6], consisting of different
types of nodes representing objects, edges denoting the rela-
tionships, and various attributes, is a unique form of graph
and is powerful to model heterogeneous and complex data in
the recommendation system. Therefore, designing a graph-
based recommendation method to mine the information in
HAN is a promising direction [7].

Recently, Graph Neural Network (GNN), a kind of
deep learning-based method for processing graphs, has
become a widely used graph analysis method due to
its high performance and interpretability. GNNs also
have an additional huge benefit: they can be learning
distributed - hence secure and safe, and at the same
time they can be used for the upcoming explainability
topic [8]. GNN based recommendation methods have
proved to be successful to some extent because they
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could simultaneously encode the graph structure and the
attributes of nodes [9]. However, the advances of GNNs
are primarily concentrated on homogenous graphs, so they
still encounter limitations while utilizing rich information in
HAN. The major challenge is caused by the heterogeneity of
the recommendation graph. The recommendation methods
should be able to measure similarities among users and
items from various aspects [5]. On the one hand, different
types of nodes have various attributes that cannot be directly
applied due to the different dimensions of node attributes
[6]. For example, a “user” is associated with attributes
like interests and the number of watched movies in movie
rating graphs, while a “movie” has attributes like genres
and publication years. On the other hand, the influence
of various relationships is different, which should not be
treated equally [10]. For instance, the correlation between
“user-Rating-movie” is intuitively stronger than “movie-
SameGenres-movie.” Hence, how to deal with different
feature spaces of various objects’ attributes and how to
make full use of heterogeneity to distinguish the impact of
different types of entities are challenging.

Furthermore, GNNs are based on the connected neighbor
aggregation strategy to update the entity’s representation
[11, 12]. However, the reality is that some potential
relationships of entities are not directly connected but
implicit [13]. For example, as shown in Fig. 1, both user
one and user two score movie one as the same rating 4,
which reflects that the interests of the two users are similar.
Analogously, movie one and movie two have the same

genres. There are some potential relationships between the
two movies. Nevertheless, these implicit relationships are
hardly captured by GNNs [14, 15]. Meanwhile, the degree
of rating could reflect the preferences of users. For instance,
user one rates movie two as 5, but movie three as 1, from
which we may infer that user two prefers movie two to
movie three. Therefore, explicitly modeling entities with
potential relationships to provide references for each other’s
recommendations and distinguishing the rating weights are
significant.

To better overcome these challenges mentioned above,
we propose a neural network model to deal with
Heterogeneous Attributed Network for Recommendation,
called HANRec, which can make full use of the hetero-
geneity of graphs and deeper encode the latent relationships.
Specifically, we first design a component connecting poten-
tial neighbors to explore the influence among neighbors
with potential connections. The connecting component also
assigns users’ rating information to different weights and
integrates them into the potential relationships. Next, we
design homogeneous and heterogeneous aggregation strate-
gies to aggregate feature information of both connected
neighbors and potential neighbors. It is worth mentioning
that we introduce the attention mechanism [16] to mea-
sure the different impacts of heterogeneous nodes. The
learned parameters in the two aggregations are differ-
ent to model diverse patterns of the heterogeneous graph
structure. Finally, we use the entities’ high-quality embed-
dings to make corresponding recommendations through the

Fig. 1 An example of connecting the users and movies from the real-
world dataset: MovieLens. The solid black line represents the rating
scores of movies by users. We use the blue dashed line to indicate
the potential relationships between users and the red dashed line to

demonstrate the potential relationships between movies through the
connect module. The black dotted line is the rating score of the movie
2 and 3 of user 2, which we want to predict
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recommendation generation component. To summarize, we
make the following contributions:

– We propose a new method to connect the users, thus
providing a potential reference for recommendations,
which is usually ignored by existing methods.

– We present a novel framework for the recommendation,
which makes full use of the heterogeneity in graphs
and utilizes two strategies for gathering information for
entities of different types.

– We design an attention mechanism to characterize the
different influences among entities.

– Our model outperforms previous state-of-the-art meth-
ods in two recommendation tasks.

The rest of this paper is organized as follows. Section 2
introduces the related works on the recommendation algo-
rithms. Section 3 describes the formulation expression of
recommendation problem, notations used in the paper, and
the heterogeneous attributed network embedding method
HANRec we proposed. Experiments and detailed analysis
are reported in Section 4. Finally, we conclude the paper in
Section 5.

2 Related work

This section briefly introduces some related works on rec-
ommendation algorithms, mainly from traditional methods
and deep learning methods.

For the past years, the use of social connections for
the recommendation has attracted great attention [17,
18]. Traditional methods to deal with recommendation
problems mainly include content-based recommendation
algorithms and collaborative filtering algorithms. The idea
of Content-Based Recommendation (CB) [19] is to extract
product features from known user preference records and
recommend the product that is most similar to his/her
known preference to the user. Collaborative Filtering (CF)
[20] aims to find some similarity through the behaviors
of groups and make recommendations for users based on
this similarity. CF methods, which are based on matrix
decomposition, decompose the user rating matrix into user
matrix U and product matrix V. U and V are recombined
to get a new user rating matrix to predict unknown ratings.
Matrix decomposition includes Funk-SVD model [21],
PMF model [22], etc.

Deep learning, as an emerging method, also has many
achievements of learning on graph structure data [23]. The
purpose of graph representation learning is to find a map-
ping function that can transform each node in the graph into
a low-dimensional potential factor. The low-dimensional
latent factors are more efficient in calculations and can also
filter some noise. Based on the nodes’ latent factors in the

graph, machine learning algorithms can complete down-
stream tasks more efficiently, such as recommendation
tasks and link prediction tasks. Graphs can easily represent
data on the Internet, making graph representation learning
more and more popular. Graph representation learning
includes random walk-based methods and graph neural
network-based methods. The random walk-based methods
sample the paths in the graph, and the structure information
near the nodes can be obtained through these random paths.
For example, the DeepWalk proposed by Perozzi et al. [24]
applies the ideas of Natural Language Processing (NLP)
to network embedding. DeepWalk treats the relationship
between the user and the product as a graph, generating
a series of random walks. A continuous space of a lower
dimension represents the user vector and the product vec-
tor. In this graph representation space, traditional machine
learning methods, such as Logistic Regression (LR), can
predict users’ ratings of products to obtain more accurate
results. Collaborative Deep Learning (CDL) proposed by
Wang et al. [25] jointly deals with the representation of
product content information and users’ rating matrix for
products. CDL relies on user reviews of the product and
information about the product itself.

Some researchers have also used graph neural networks
(GNNs) to complete recommendation tasks in recent years.
Graph Convolutional Network [26] (GCN) is one of the
representative methods. GCN uses convolution operators on
the graph to iteratively aggregate the neighbor embeddings
of nodes. It utilizes the Laplacian matrix of the graph to
implement the convolution operation on the topological
graph. In the multi-layer GCNs, each convolutional layer
processes the graph’s first-order neighborhood information.
Superimposing multiple convolutional layers can realize
information transfer on the multi-level neighborhood
[27]. On this basis, some GNN-based frameworks for
recommendation tasks have been proposed. According to
whether to consider the order of items, recommendation
systems can be divided into regular recommendation tasks,
and sequential recommendation tasks [28]. The general
recommendation considers users to have static interest
preferences and models the degree of matching among
users and items based on implicit or explicit feedback.
GNN can capture user-item interactions and learn user
and item representations. The sequential recommendation
captures the serialization mode in the item sequence and
recommends the next item of interest to the user. There are
mainly methods based on Markov chain (MC) [29], based
on RNN [30], and based on attention and self-attention
mechanisms [31]. With the advent of GNN, some works
convert the item sequence into a graph structure and use
GNN to capture the transfer mode. Since this paper focuses
on discussing the former, we mainly introduce the work of
the general recommendation.
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General recommendation uses user-item interaction to
model user preferences. For example, GC-MC, (Graph
Convolutional Matrix Completion) proposed by Berg, deals
with rating score prediction, and the interactive data is
represented as a bipartite graph with labeled edges. GC-
MC only uses interactive items to model user nodes
and ignores the user’s representation. So the limitations
of GC-MC are: 1) it uses mean-pooling to aggregate
neighbor nodes, assuming that different neighbors are
equally important; 2) it only considers first-order neighbors
and cannot make full use of the graph structure to spread
information. Online social networks have also developed
rapidly in recent years. Recommendation algorithms that
use neighbors’ preferences to portray users’ profiles have
been proposed, which can better solve the problem of
data sparsity and generate high-quality embeddings for
users. These methods use different strategies for influence
modeling or preference integration. For instance, DiffNet
[32] models user preferences based on users’ social
relationships and historical behaviors, and it uses the
GraphSAGE framework to model the social diffusion
process. DiffNet uses mean-pooling to aggregate friend
representations and mean-pooling to aggregate historical
item representations to obtain the user’s representation in
the item space. DiffNet can use GNN to capture a more
in-depth social diffusion process. However, this model’s
limitations include: 1) The assumption of the same influence
is not suitable for the real scene; 2) The model ignores
the representation of the items and can be enhanced by
interactive users. GraphRec proposed by Fan et al. [5]
learns the low dimensional representation of users and
products through graph neural networks. GraphRec uses
the mean square error of predicted ratings to guide the
neural network’s parameter optimization and introduced
users’ social relationships and attention mechanisms to

describe user preferences better. With the emergence of
heterogeneous and complex data in the recommendation
network, some work has introduced knowledge graphs (KG)
into recommendation algorithms. The challenge of applying
the KG to recommendation algorithms comes from the
complex graph structure, multiple types of entities, and
relationships in KG. Previous work used KG embedding
to learn the representation of entities and relationships;
or designed meta-path to aggregate neighbor information.
Recent work uses GNN to capture item-item relationships.
For example, KGCN [33] uses user-specific relation-
aware GNN to aggregate neighbors’ entity information
and uses knowledge graphs to obtain semantically aware
item representations. Different users may impose different
importance on different relationships. Therefore, the model
weights neighbors according to the relationship and the user,
which can characterize the semantic information in the KG
and the user’s interest in a specific relationship. The item’s
overall representation is distinguished for different users,
and semantic information in KG is introduced. Finally,
predictions are made based on user preferences and item
representations. IntentGC [34] reconstructs the user-to-user
relationship and the item-to-item relationship based on
the multi-entity knowledge graph, greatly simplifying the
graph structure. The multi-relationship graph is transformed
into two homogeneous graphs, and the user and item
embeddings are learned from the two graphs, respectively.
This work also proposes a more efficient vector-wise
convolution operation instead of the splicing operation.
IntentGC uses local filters to avoid learning meaningless
feature interactions (such as the age of one’s node and
neighbor nodes’ rating).

Although the previous work has achieved remarkable
success, the exploration of potential relationships in social
recommendations has not been paid enough attention. In

Fig. 2 The architecture of HANRec. It contains four major components: connecting potential neighbors, homogeneous aggregation, heterogeneous
aggregation and rating generation
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this paper, we propose a graph neural network framework
that can connect potential relationships in the network to fill
this gap.

3 Proposed framework

In this section, we present the proposed HANRec in detail.
First, we define the heterogeneous attributed network,
the formula expression of the recommendation and link
prediction problem, and the symbols used in this paper.
Later, we give an overview of the proposed framework
and the details of each component. Finally, we introduce
the optimization objectives of HANRec. The schematic of
connecting the users and the model structure is shown in
Fig. 2.

3.1 Problem formulation and symbols definition

Definition 1 Heterogeneous attributed network

A heterogeneous attributed network can be represented
as G = (V , E, A). V is a set of nodes representing
different types of objects, E is a set of edges representing
relationships between two objects, and A denotes the
attributes of objects. The graph’s heterogeneity is reflected
as: the number of node types plus the number of edge types
is bigger than two. On the other hand, when both the number
of node types and the number of edge types are equal to

one, we call it a homogeneous graph [35]. Attributed graphs
mean that each node in graphs has corresponding attributes.
Attributed entities are widespread in the real world. For
example, in a movie recommendation network, each movie
has its genres, and users have their preferences; in an author-
paper network, each author and paper has related research
topics. Therefore, most networks in the real world can be
treated as heterogeneous attribute graphs, which is the focus
of this paper.

Definition 2 Recommendation

In this paper, the task of recommendation is focused. For
a graph G = (V , E), vi and vj are two entities in this
graph. In the triple (r , vi , vj ), r represents the relationship
between vi and vj . A recommendation model learns a score
function, and outputs the relationship ri,j between vi and
vj : ri,j = Recommendation Model(vi, vj ). For example,
in the user-movie-rating recommendation network, the main
focus is to recommend movies that users might be interested
in. This requires the recommendation model to accurately
give users the possible ratings of these movies (commonly a
5-point rating, etc.), which is a regression problem.

Definition 3 Link prediction

We also discussed link prediction in this paper. For a
graph G = (V , E), vi and vj are two entities in this graph.
In the triple (ri,j , vi , vj ), ri,j represents the relationship

Table 1 Symbols’ definition
Symbols Definitions

B(vi) The set of entities of the same type as entity vi .

C(vi) The set of entities of different types as entity vi .

N(vi) The set of entities which are neighbors of entity vi .

N(vi) The set of entities which are not the neighbors of entity vi .

N ′(vi) The set of entities that have potential connections with entity vi .

ri,j The relationship between entity vi and vj .

pi The embedding vector of entity vi .

d The embedding dimension of pi .

ei,j The rating embedding for the rating level (entity vi to vj ).

h0
i The initial representation vector of entity vi .

hB
i

The influence embedding among entity vi and entities of the same type.

hC
i The influence embedding among entity vi and entities of different types.

f i,j The opinion-aware interaction representation between entity vi and vj .

α∗
i,j Attention parameter between entities of the same type (vj to vi ).

β∗
i,j Attention parameter between entities of different types (vj to vi ).

αi,j The normalized attention parameter between entities of the same type (vj to vi ).

βi,j The normalized attention parameter between entities of different types (vj to vi ).

W , b The weight and bias in neural networks.

Vectors and matrices are bolded
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between vi and vj . A link prediction model learns a score
function, and outputs the relationship ri,j between vi and
vj : ri,j = Link P rediction Model(vi, vj ). In most cases,
the value of ri,j is 0 or 1. This means that there is no edge or
there is an edge between the two entities, which is a binary
classification problem.

The purpose of link prediction is to infer missing links
or predict future relations based on the currently observed
part of the network. This is a fundamental problem with a
large number of practical applications in network science.
The recommendation problem can also be regarded as a
kind of link prediction problem. The difference is that
recommendation is a regression task that needs to predict
specific relationships (such as the ratings of movies by
people in a movie recommendation network). At the same
time, link prediction is a binary classification task, where we
need to determine whether there is a link connected between
the two entities.

The mathematical notations used in this paper are
summarized in Table 1.

3.2 An Overview of HANRec

HANRec consists of four components: Connecting Poten-
tial Neighbors, Homogeneous Network Aggregation, Het-
erogeneous Network Aggregation, and Recommendation
Generation. Connecting Potential Neighbors is designed to
fully explore the influence among neighbors with potential
connections. Like the common user-movie-rating network,
there is a lot of data for users’ ratings of movies, but there
is little or no interaction among users. However, the inter-
action among users is important, and there may be potential
influences among users. Users with the same interests will
have a high probability of giving similar ratings to the
same movie. This component uses shared entities to gen-
erate a connection path, which utilizes scores and features
to model the potential influence and generate high-quality
entity representations.

Homogeneous Network Aggregation is responsible for
aggregating information of entities of the same type and
quantifying the influence of different neighbors on the
entity through an attention mechanism. This component
is mainly to portray the influence among entities of
the same type. Heterogeneous Network Aggregation is
responsible for aggregating information of entities of
different types. We also use the user-movie-rating network
to illustrate. Different movie genres and the user’s ratings
will describe the user’s preferences from a particular
perspective. Heterogeneous Aggregation Network will
focus on describing an entity’s characteristics from the
perspective of entities of different types. Recommendation
generation gathers all the information related to the entity
and generates its high-quality embedding. This component

also matches the embeddings of other entities to make the
final recommendations.

As shown in Fig. 2, in the movie recommendation
network, we connect different users/movies through the
designed connection method (as indicated by the orange
arrow). Then we use homogeneous and heterogeneous agg-
regation to combine the user or movie features and gene-
rate the final representation embeddings. Finally, the user’s
embedding is compared with the movie’s embedding to be
evaluated, and the final rating score is generated. Next, we
introduce the details of each component.

3.3 Connecting potential neighbors

We design this component to fully explore the influence
among neighbors with potential connections, which are not
directly connected in the original graph. Note that in the
common user-movie-rating network, there may not be a
direct link among users and users, movies and movies. At
this time, we can connect the users and movies through
second-order neighbors. Suppose that vj ∈ B(vi) ∩ N(vi),
vk ∈ C(vi) ∩ N(vi), vk ∈ C(vj ) ∩ N(vj ), where B(vi) is
the set of entities that are the same type of vi ; C(vi) is the
set of entities that are different types of vi ; N(vi) represents
the set of neighbors of vi and N(vi) represents the set of
nodes which are not the neighbors of vi . We can infer the
influence of vj on vi from the common neighbor vk:

f i,j = MLP
(
h0

k ⊕ ei,k ⊕ h0
j ⊕ ek,j

)
, (1)

where f i,j is the opinion-aware interaction representation
between entity vi and vj ; MLP means Multilayer
Perceptron [36]; ⊕ represents the concatenate operator of
two vectors; h0

k
and h0

j
represent the initial features of

vk and vj , respectively; ei,k and ek,j represent the rating
embeddings for the rating level between vi , vk and vk , vj ,
respectively.

The design to formula (1) is based on the assumption
when evaluating the influence among entities, the entity
features and the rating information are both critical, and they
can reflect how significant the impact is. For instance, if
two people have a similar taste for the same movie, then the
two people should have a more significant influence on each
other. Referred to [5], we use the dense learnable vector
ei,j , which can help us better characterize each rating score
in the embedding space. For example, in a five-star rating
system, we have five rating levels: {1, 2, 3, 4, 5}. Instead
of directly using the rating level number, we first randomly
initialize five rating embeddings: {e1, e2, e3, e4, e5}. Then
all ei,j will belong to one of those five rating embeddings
and they will be jointly learned during the training stage.

Subsequent ablation study in Section 4.7 also proved the
advantages of this design. Through this connecting way, we
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use f i,j to represent their previous potential relationship
between vi and vj . Then vj is added to N ′(vi), which
represents the set of entities that have potential connections
with entity vi . The connection method we designed can fully
integrate the characteristics of entities and the relationships
among entities in the path. For example, there may not
be a direct connection among users in a common movie
recommendation network. In this way, the two users can
be connected by using the movies they have watched
together. The movie genres and the user’s rating of the
movie can provide an essential reference for users’ potential
relationships.

3.4 Homogeneous network aggregation

Homogeneous Network Aggregation aims to learn the
influence embedding hB

i
, representing the relationship

among entity vi and entities of the same type. Given the
initial representation of entity vj , and the rating embedding
ei,j , the opinion-aware interaction representation f i,j can
be expressed as:

f i,j = MLP
(
h0

j ⊕ ei,j

)
. (2)

In this way, we can get a vector that combines entity features
and rating information. So we call f i,j the “opinion-
aware” interaction representation. The attention parameter
α∗

i,j reflecting the influence of different entities vi and vj is
designed as:

α∗
i,j = wT

2 · σ
(
W 1 ·

[
h0

i ⊕ h0
j

]
+ b1

)
+ b2, (3)

where W and b represents the weight and bias in neural
networks. The normalized attention parameter αi,j is as
follows:

αi,j =
exp

(
α∗

i,j

)

∑
k∈B(vi )∩(N(vi )∪N ′(vi ))

exp
(
α∗

i,k

) . (4)

The design of attention parameters is based on the
assumption that entities with similar characteristics should
have greater influence among them. And we use a neural
network to learn this influence adaptively. In this way,
we get the information gathered by entity vi from its
homogeneous graph:

hB
i =

∑
j∈B(vi )∩(N(vi )∪N ′(vi ))

(αi,j ∗ f i,j ) (5)

It is worth mentioning that when we aggregate neighbor
information, we not only consider neighbors with edge
connections but also consider neighbors with potential
relationships discovered through our connection method.
We aggregate their influence on entity vi in the meantime.
Subsequent experiments proved the superiority of our
design ideas.

3.5 Heterogeneous network aggregation

Heterogeneous Network Aggregation aims to learn the
influence embedding hC

i , representing the relationship
among entity vi and entities of different types. Given the
initial representation of entity vj , and the rating embedding
ei,j , the opinion-ware interaction representation f i,j can
be expressed as:

f i,j = MLP
(
h0

j ⊕ ei,j

)
(6)

The attention parameter β∗
i,j reflecting the influence of

different entities vi and vj is designed as:

β∗
i,j = wT

4 · σ
(
W 3 ·

[
h0

i ⊕ h0
j

]
+ b3

)
+ b4 (7)

The normalized attention parameter βi,j is as follows:

βi,j =
exp

(
β∗

i,j

)

∑
k∈C(vi)∩(N(vi )∪N ′(vi ))

exp
(

β∗
i,k

) (8)

In this way, we get the information gathered by entity vi

from its heterogeneous graph:

hC
i =

∑
j∈C(vi)∩(N(vi )∪N ′(vi ))

(βi,j ∗ f i,j ) (9)

According to the different types of neighbors, we designed
two aggregation strategies to highlight the impact of
different types of entities on vi . For example, in a common
movie recommendation network, the influence of movies
and other people on a person should be different, and mixing
them cannot make full use of the graph’s heterogeneity. The
subsequent experimental part also proved our conjecture.

3.6 Recommendation generation

After gathering information from entities of the same and
different types, we can easily get the latent representation of
entity vi :

pi = MLP
(
h0

i ⊕ hB
i ⊕ hC

i

)
, (10)

where h0
i is the initial representation of entity vi , such

as the user’s preferences in the user-movie-rating network,
the movie genres, etc. hB

i
and hC

i represent the influence
embeddings indicating the relationships among entity vi and
entities of the same type and different types, respectively.
For vi and vj , after getting the embeddings that aggregate a
variety of information (pi and pj ), their relationship can be
measured as:

ri,j = MLP(pi ⊕ pj ). (11)

So far, the entire end-to-end recommendation prediction
process has been completed.
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3.7 Objective function

To optimize the parameters involved in the model, we
need to specify an objective function to optimize. Since
the task we focus on in this work is rating prediction and

link prediction, the following loss function is used referred
to [5]:

Loss = 1

2|T |
∑

i,j∈T

(r ′
i,j − ri,j )

2, (12)
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Fig. 3 Characteristics of the MovieLens and the AMiner dataset

where |T | is the number used in the training dataset, r ′
i,j is

the relationship between entity vi and vj predicted by the
model and ri,j is the ground truth.

To optimize the objective function, we use Adam [37]
as the optimizer in our implementation. Each time it
randomly selects a training instance and updates each
model parameter in its negative gradient direction. In
optimizing deep neural network models, overfitting is an
eternal problem. To alleviate this problem, we adopt a
dropout strategy [38] in the model. The idea of dropout is
to discard some neurons during training randomly. When
updating parameters, only part of them will be updated.
Besides, since the dropout function is disabled during the
test, the entire network will be used for prediction. The
whole algorithm framework is shown in algorithm 1.

4 Experiments

4.1 Datasets

In order to verify the effectiveness of HANRec, we
performed two tasks: recommendation and link prediction.

We use MovieLens Latest Dataset 1, a common data
set in the field of movie recommendation, for the
recommendation task. It consists of 10,334 nodes, including
610 users and 9724 movies, and 100,836 edges. It is
worth mentioning that the edges here all indicate the users’
ratings of movies, and there is no edge connection among
users or among movies. So in this case, the original edges
only connect users and movies, that is, different types
of nodes. While connecting potential neighbors, we better
characterize the impact of users on users and movies on
movies, that is, the effect among nodes of the same type

1https://grouplens.org/datasets/movielens/latest/

to generate high-quality node embeddings. MovieLens also
includes the movie’s genre attributes and timestamps of
ratings. Movie categories include 18 categories such as
Action, Drama, Fantasy. Each movie can have multiple
unique category attributes. For example, Batman (1989) has
three category attributes: Action, Crime, and Thriller. We
initialize representation embeddings for these 18 genres.
The initial embedding of each movie is the average of
the genre’s embeddings in the movie. For the MovieLens
dataset, our model focuses on three kinds of embeddings,
including user embedding h0

i , where i belongs to the user
index, movie embedding h0

j
, which is composed of the

embedding of movie genres, and j belongs to the movie
index, and opinion embedding ei,j . They are initialized
randomly and learned together during the training phase.
Since the original features are extensive and sparse, we
do not use one-key vectors to represent each user and
item. By embedding high-dimensional sparse features into
the low-dimensional latent space, the model can be easily
trained [39]. The opinion embedding matrix ei,j depends on
the system’s rating range. For example, for the MovieLen
dataset, which is a 5-star rating system and 0.5 as an interval,
the opinion embedding matrix e contains nine different
embedding vectors to represent {0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, 5} in the score. Figure 3a shows the rating score
distribution of edges in the MovieLens dataset. We can
clearly see fewer edges with lower rating scores, and there
are more edges with rating scores from 3 to 4.

For the link prediction task, we use the AMiner dataset2

[40]. We construct the relationship between an author and
one paper when the author published this paper. We also
generate the relationships among authors when they are
co-authors and generate the relationships among papers
when there are citation relationships. The authors’ initial

2https://www.aminer.cn/aminernetwork

https://grouplens.org/datasets/movielens/latest/
https://www.aminer.cn/aminernetwork
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attribute contains research interests, published papers, and
the total number of citations. [41]. The title and abstract
can represent the initial attribute of papers. In this author-
paper-network, we treat the weights of edges as binary.
In the experiment part, we selected all papers from the
famous venues3 in eight research topics [42] and all the
relative authors who published these papers. Based on
this, we derive a heterogeneous attributed network from
the academic network of the AMiner dataset. It consists
of 29,059 nodes, including 16,604 authors and 12,455
papers with eight labels, and 124,626 edges representing
62,115 coauthor, 31,251 citation, and 31,263 author-paper
relationships. We treat authors’ and papers’ text descriptions
as node attributes and transform them into vectors by
Doc2vec in the experiments. Figure 3b shows the node
distribution of the AMiner dataset. We can find that most
nodes have a small number of neighbors, but there are still
some super nodes whose number of neighbors exceeds 100.
In this case, it is more important to distinguish the influence
of different neighbors effectively.

4.2 Metrics

We apply two conventional evaluation metrics to evaluate
the performance of different models for recommendation:
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE):

MAE = 1

m

m∑
i=1

|pi − ai |, (13)

RMSE =
√√√√ 1

m

m∑
i=1

(pi − ai)2, (14)

where a is the actual target and p is the predict target.
Smaller values of MAE and RMSE indicate better
predictive accuracy. For the link prediction task, Accuracy

and AUC (Area Under the Curve) are used to quantify the
predictive performance:

Accuracy = T P + T N

T P + T N + FP + FN
, (15)

AUC = n′ − 0.5n′′

n
, (16)

where T P , T N , FP and FN respectively stand for true
positive, true negative, false positive and false negative. n is
the number of independent comparisons. n′ is the number
of times the missing link having a higher score and n′′ is the
number of times they have the same score. In general, the

31. IEEE Trans. Parallel Distrib. Syst; 2. STOC; 3. IEEE Communica-
tions Magazine; 4. ACM Trans. Graph; 5.CHI; 6. ACL; 7. CVPR; 8.
WWW

value of AUC will be between 0.5 and 1. Higher values of
accuracy and AUC indicate better predictive performance.

4.3 Baselines

The methods in our comparative evaluation are as follows:

– Doc2Vec [43] is the Paragraph Vectors algorithm that
embeds the text describing objects in a distributed vec-
tor using neural network models. Here we use Doc2Vec
to process the text describing authors and papers’
research interests in the link prediction task to obtain
the initialization embeddings of authors and papers.

– DeepWalk [24] uses random walk to sample nodes
in the graph to get the node embeddings. As for the
relevant parameters, we refer to the original paper. We
set num-walks as 80, walk-length as 40, and window-
size as 10.

– LINE [44] minimizes a loss function to learn embed-
ding while preserving the first and the second-order
neighbors’ proximity among nodes. We use LINE (1st
+ 2nd) as overall embeddings. The number of negative
samples is 5, just the same as the original paper.

– SoRec [3] performs co-factorization on the user-item
rating matrix and user-user social relations matrix. We
set the parameters as the same as the original paper. λC

= 10, and λU = λV = λZ = 0.001.
– LightGCN [45] simplifies the design of GCN, which

removes the feature transformation and nonlinear
activation, to make it more concise and appropriate
for recommendation. We use the same parameters
introduced in the original paper: the default learning
rate is 0.001 and the L2 regularization coefficient λ is
0.0001.

– GATNE [35] provides an embedding method for large
heterogeneous network. In the two datasets used here,
the edge type is 1, so the edge embedding type in
GATNE is set to 1.

– GraphRec [5] jointly captures interactions and opin-
ions in the user-item graph. For the MovieLens dataset
here, there are no user-to-user and movie-to-movie
interactions, so only item aggregation and user aggre-
gation of the original paper are used.

– HANRec is our proposed framework, which makes full
use of the heterogeneity and attribute of the network
and uses the attention mechanism to provide better
recommendations.

4.4 Training details

For the task of recommendation, we use the MovieLens
dataset. The recommendation task’s goal is to predict the
rating score of one user to one movie. x% of the scoring
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Table 2 Results comparison of the recommendation

Train Edges DeepWalk LINE SoRec LightGCN GATNE GraphRec HANRec

30% 0.8514/1.0578 0.8614/1.0687 0.8278/1.0324 0.8307/1.0498 0.7923/0.9848 0.7824/0.9748 0.7751/0.9624

40% 0.8258/1.0014 0.8413/1.0342 0.7891/0.9936 0.8125/1.0123 0.7774/0.9607 0.7528/0.9555 0.7419/0.9355

50% 0.7869/0.9817 0.8017/0.9959 0.7417/0.9615 0.7828/0.9825 0.7319/0.9487 0.7347/0.9379 0.7128/0.9132

60% 0.7521/0.9678 0.7758/0.9816 0.7314/0.9504 0.7599/0.9707 0.7217/0.9215 0.7191/0.9189 0.6981/0.9047

70% 0.7331/0.9497 0.7525/0.9607 0.7257/0.9407 0.7409/0.9534 0.7047/0.9158 0.7055/0.9107 0.6823/0.8925

80% 0.7250/0.9418 0.7332/0.9511 0.7192/0.9339 0.7287/0.9438 0.6954/0.9057 0.6966/0.9071 0.6753/0.8855

90% 0.7148/0.9375 0.7241/0.9403 0.6957/0.9048 0.7173/0.9340 0.6824/0.8907 0.6807/0.8827 0.6673/0.8681

MAE/RMSE are evaluation metrics. The best results are bolded

records are used for training, and the remaining (100-x)%
are used for testing. In this task, HANRec will output a
value between 0.5 and 5.0, indicating the user’s possible
rating for the movie. The closer the score is to the ground
truch, the better the performance of the model. For the task
of link prediction, we use the AMiner dataset. The link
prediction task’s goal is to predict whether there is an edge
between two given nodes. First, we randomly hide (100-
x)% of the edges in the original graph to form positive
samples in the test set. The test set also has an equal number
of randomly selected disconnected links that servers as
negative samples. We then use the remaining x% connected
links and randomly selected disconnected ones to form the
training set. HANRec outputs a value from 0 to 1, indicating
the probability that there are edges among entities. For these
two tasks, the value of x ranges from 30 to 90, and the
interval is 10. It is worth noting that when x is low, we call
it a cold-start problem [46], which is discussed in detail in
the Section 4.6.

The proposed HANRec is implemented on the basis of
Pytorch 1.4.0.4 All multilayer perceptrons have a three-layer
linear network and prelu activation function by default.
The embedding size d used in the model and the batch
size are all set to 128. The learning rate are searched in
[0.001, 0.0001, 0.00001], and the Adam algorithm is used
to optimize the parameters of HANRec. The performance
results are recorded on the test set after 2000 iterations
on the MovieLens dataset and 20000 iterations on the
AMiner dataset. The parameters for the baseline algorithms
are initialized as in the corresponding papers and are then
carefully tuned to achieve optimal performance.

4.5 Main results

We can first see that no matter which task it is, as the
proportion of the training data set increases, the effect of
HANRec on the test set gets better and better. Then we

4https://pytorch.org/

focus on the recommendation performance of all methods.
Table 2 shows the overall rating prediction results (MAE

and RMSE) among different recommendation methods on
the MovieLen dataset. We find that no matter how much
x is, the performance of DeepWalk and LINE, which are
based on the walking in the graph, is relatively low. As a
matrix factorization method that leverages both the rating
and social network information, SoRec is slightly better
than the previous three. Although LightGCN has proved
successful in simple collaborative filtering, its performance
in more complex situations is weaker than deep learning
methods. For example, the MovieLens dataset contains
entity attributes of different types and rating information.
It is difficult for LightGCN to fully capture information
of this dataset using only linear transformation. GATNE’s
embedding of edge heterogeneity and GraphRec’s social
aggregation cannot be fully utilized in this case. In this
dataset, there is no connection among users. Without a well-
designed connecting strategy, GraphRec cannot explore
the potential influence among users, which is essential in
providing accurate recommendations. Nevertheless, these
two methods’ performance is generally better than the
previous methods, proving the effectiveness of deep neural
networks on the recommendation task. The model we
proposed, HANRec, can fully connect users, thus providing
more guidance for the recommendation showing the best
performance on the recommendation task.

Then we evaluate HANRec’s performance on the link
prediction accuracy and compare HANRec with other
link prediction algorithms mentioned above. Table 3
demonstrates that the performance of Doc2Vec, which
does not use graph information and only uses the initial
information of each node, is the worst. This shows that the
graph structure is essential in the link prediction task, and
the initial features of the nodes are challenging to provide
enough reference for the link prediction task. Methods
that use graph structure information, such as DeepWalk,
LINE and SoRec, have higher performance than Doc2Vec,
indicating that in this case, the graph structure information

https://pytorch.org/
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is more important than the initial information of nodes. In
the Aminer dataset, there are three kinds of relationships:
the coauthor relationship among authors, the publication
relationship among authors and papers, and the citation
relationship among papers. In addition, authors and papers
also have their initial features. It is difficult for LightGCN to
learn the high-quality representation of each entity by using
simple linear transformations, so its performance is weaker
than deep learning methods such as GATNE. The effect
of GATNE, which uses graph heterogeneity, is better than
the previously mentioned methods, which shows that graph
heterogeneity can also provide some reference for the link
prediction task. The performance of our method HANRec
in the link prediction task far exceeds other methods, which
further shows that the framework can fully consider the
homogeneity and heterogeneity of the graph and uses the
attention mechanism to generate high-quality embeddings
for nodes. Further investigations are also conducted to better
understand each component’s contributions in HANRec in
the following subsection.

In conclusion, we can know from these results: (1)
graph neural networks can boost the performance in the
recommendation and the link prediction tasks; (2) using the
heterogeneity of graphs can make full use of the information
of the network, thereby improving the performance on these
two tasks; (3) our proposed HANRec achieves the state-of-
art performance in the MovieLens and the AMiner datasets
for both tasks.

4.6 Cold-start problem

The cold-start problem [46] refers to the difficulty of the
recommendation system to give high-quality recommenda-
tions when there is insufficient data. According to [47], the
cold-start problem can be divided into three categories: (1)
User cold-start: how to make personalized recommenda-
tions for new users; (2) Item cold-start: how to recommend
a new item to users who may be interested in it; (3) System
cold-start: how to design a personalized recommendation
system on a newly developed website (no users, user behav-
ior, only partial item information), so that users can expe-
rience personalized recommendations when the website is
released.

In this paper, we study these three cold-start problems
by modifying the data distribution in the training dataset.
(1) For the user cold-start problem, it solves the problem
of how to make personalized recommendations for new
users. Nowadays, many methods [48] require users to give
feedback on items when users first log in to the system.
They collect information about the user’s interest in these
items and then recommend items similar to these items to
the user. We can replace the information provided when they
log in by adding a tiny amount of information about the
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Fig. 4 Cold-start problem analysis on the MovieLens and AMiner datasets

user in the training dataset. For example, for the MovieLens
dataset, we randomly select 5% from 610 users, that is, 35
users as new users. Then we use all the information of the
other 95% of users (rating scores of the movie and attributes
of the corresponding movie’s subject matter) for training.
Next, for each of these 35 users, we randomly select 1, 2,
and 3 movie rating records and add them to the training

dataset to simulate their feedback when they first logged in
to the system. Finally, we use the other rating score data of
these 35 users as the test dataset. As for the AMiner dataset,
we use the same preprocessing method. We randomly select
5% from 16,604 authors, that is, 830 authors as new users,
and use the rest as the training dataset. Next, for each of
these 830 authors, we select 1, 2, and 3 edges connected to
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it and add them to the training dataset. After this, we use
rest edges and negative samples related to these new users
as the test dataset. (2) The item cold-start problem mainly
solves the problem of how to recommend a new item to
users who may be interested in it [49]. Like user cold-start,
in the MovieLens dataset, we filter out 5% of 9724, that
is, 486 movies, and then select 1, 2, and 3 rating records
for each item. Then we add them to the training set and
treat the rest as the test dataset. For the AMiner dataset, we
select 5% of 12455, that is, 623 papers, and add 1, 2, and
3 edges to the training dataset for each paper. We also use
negative sampling to generate the test dataset. (3) And for
the system cold-start problem, we define it as how to make
high-quality recommendations based on the information of
a small number of edges (rating scores or relationships). We
continuously adjust the proportion of available information
in the two datasets, that is, the proportion of training dataset
x, from 5% to 25%, and obtain the performance results of a
series of methods.

Figure 4 shows the corresponding cold-start analysis on
the MovieLens and AMiner datasets. Since the random
walk-based methods (DeepWalk and LINE) have similar
performance, we only report the results of DeepWalk here.
As a GCN-based method, LightGCN only uses the informa-
tion whether the edge exists and does not use the weight
information of the edge (such as a rating score, etc.). It is
difficult for LightGCN to give a high-quality recommen-
dation when we need to get a specific rating score. When
only a few edges (rating scores or relationships) are given,
it is harder for LightGCN to provide effective recommenda-
tions. So for graph deep learning methods, we only discuss
GATNE and GraphRec here, which can make full use of
data information, as comparison algorithms.

As shown in Fig. 4a and b, even if we only add one
edge related to each test user (new user) in the training set,
HANRec can still show excellent performance. For exam-
ple, HANRec reaches more than 0.95 for the AUC index
in the AMiner dataset, indicating that HANRec can fully
describe the characteristics of new users with only a few
tags. It is helpful for the system to predict the preferences
of new users in the future. For the item cold-start problem,
HANRec still achieves the highest performance in various
cases. When the ratio of the training edges is from 5% to
25%, both Fig. 4e and f reflect that HANRec performs the
best. Specifically, when the proportion of training edges is
5%, HANRec outperforms other methods the most. This
reflects the superiority of the connect method we designed:
when there are very few known edges, the entity’s neigh-
bor information is incomplete. The embedding obtained
by other methods by aggregating neighbor information
does not fully integrate this neighbor information. By
connecting potential neighbors, HANRec overcomes the
disadvantage of few known edges to a certain extent and

is suitable for alleviating the difficulty of generating high-
quality recommendations during cold-start. Whether it is
a user/item/system cold-start problem, we can find that the
graph-based deep learning method is better than the random
walk method and the matrix decomposition method; and in
the graph deep learning method, HANRec has achieved the
best. It is worth noticing that as shown in Fig. 4f, Doc2Vec,
the recommended method based on entity features, is better
than DeepWalk as the first, which is based on the random
walk. As the proportion of the training edges increases,
DeepWalk gradually overtakes Doc2Vec. This is intuitive:
because DocVec does not use the graph’s structural informa-
tion, it only makes recommendations based on each entity’s
feature. The increase in the number of training edges has
relatively little effect on the performance improvement of
Doc2Vec. While DeepWalk can capture more neighbor
information by random walking, improve the generated
embedding quality, and make better recommendations.

4.7 Ablation study

We evaluate how each of the components of HANRec
affects the results. We report the results on two datasets
after removing a specific part. HANRec-C, HANRec-
Homo, HANRec-Hete, HANRec-Att respectively represent
our model without connecting potential neighbors, homo-
geneous aggregation, heterogeneous aggregation, and the
attention mechanism. HANRec is the complete model we
proposed. It can be seen from Fig. 5 that regardless of
removing the connecting component, homogeneous aggre-
gation, heterogeneous aggregation, or the attention mech-
anism, the performance of HANRec shows attenuation,
and removing the attention mechanism has less impact on
performance than the former three. This makes intuitive
sense. The other three cases will lose much information
in the graph, which is not conducive to the entity’s high-
quality embedding. It is worth noting that after removing
the connecting component, the performance of the model
has dropped a lot, indicating that the connection method
we designed can provide an essential reference for recom-
mendations. This also further proves that the connecting
component, aggregation methods, and attention mechanism
are practical. With their joint contribution, HANRec can
perform well in the recommendation task.

We also explore the performance of different connection
strategies. Connecting-FB represents the feature-based
connecting method. When we explore neighbors with
potential relationships, Connecting-FB only uses the feature
information of entities on the path, not the relationship
information among entities. In this case, formula (1) can
be rewritten as: f i,j = MLP(h0

k
⊕ h0

j
). Connecting-RB

means the relation-based connecting method. Connecting-
RB only uses the relationship information among entities
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Fig. 5 Effect of each component on the MovieLens and the AMiner dataset

Fig. 6 The performance of different connecting methods on the MovieLens and the AMiner dataset

Fig. 7 The performance of GraphRec and HANRec with different aggregation layers on the MovieLens and the AMiner dataset. GraphRec,
GraphRec-2, and GraphRec-3 contain one, two, and three aggregation layers, respectively, and the same goes for HANRec, HANRec-2, and
HANRec-3
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Fig. 8 Effect of dimension d on the MovieLens and the AMiner dataset

on the path, not the feature information of entities. So
formula (1) can be rewritten as: f i,j = MLP(ei,k ⊕
ek,j ). Connecting is the complete connecting method we
proposed. As shown in Fig. 6, whether it is a feature-
based connection or a relationship-based connection, the
model’s performance is not as good as the connection
method we use. This is intuitive: for example, in a movie
recommendation network, if two users have watched a
movie, then both the rating scores of the movie and the
characteristics of the movie and users can provide a vital
reference for the relationship among users.

4.8 Parameter analysis

In this part, we discuss the impact of the number of
aggregation layers on the performance of GraphRec and
HANRec. GraphRec, GraphRec-2, and GraphRec-3 contain
one, two, and three aggregation layers, respectively, and
the same goes for HANRec, HANRec-2, and HANRec-
3. Figure 7 shows that for both GraphRec and HANRec,
increasing the number of aggregation layers does not
significantly improve the performance. For the MovieLens
Lateset Datasets, when the number of aggregation layers
of HANRec is increased to three, the performance will
decrease to a certain extent, which may be due to too
many parameters, and the model is challenging to train
adequately. When the aggregation layer of GraphRec is two,

the model has learned the influence of entities with potential
relationships through implicit aggregation. However, the
performance is still weaker than that of HANRec, which
shows that in this task, explicit mining of neighbors with
potential relationships is better than implicit mining by
stacking multiple aggregation layers, which is also in
line with our design philosophy. For the AMiner dataset,
HANRec-3 is slightly better, while HANRec-2 is a little bit
worse than HANRec. We infer that the difference in the
random initialization embedding leads to slight fluctuations
in the results when the number of aggregation layers is
different. But no matter which number of aggregation
layers is used, the effect of HANRec is significantly higher
than that of GraphRec, which shows the effectiveness of
HANRec.

Then, we analyze the effect of embedding dimension d

of the entity’s latent representation pi on the performance
of HANRec. Figure 8 presents the performance comparison
of the embedding dimension on the MovieLens and the
AMiner datasets. In general, with the increase of the
embedding dimension, the performance first increases
and then decreases. When expanding the embedding
dimension from 32 to 128 can improve the performance
significantly. However, with the embedding dimension of
256, HANRec degrades the performance. It demonstrates
that using a large number of the embedding dimension
has powerful representation. Nevertheless, if the embedding

Fig. 9 Performance with respect to the number of iterations on the MovieLens and the AMiner dataset
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dimension is too large, the complexity of our model will
significantly increase. Therefore, we need to find a proper
length of embedding to balance the trade-off between the
performance and the complexity.

We also study the performance change w.r.t. the number
of iterations when the learning rate is 0.001, and the training
ratio is 90%. As shown in Fig. 9, we can see that the
proposed model has a fast convergence rate, and about 400
iterations are required for the MovieLens dataset, while
about 8000 iterations are required for the AMiner dataset.

5 Conclusion

In this paper, we propose a heterogeneous attributed
network framework with a connecting method, called
HANRec, to address the recommendation task in the
heterogeneous graph. By gathering multiple types of
neighbor information and using the attention mechanism,
HANRec efficiently generates embeddings of each entity
for downstream tasks. The experiment results on two
real-world datasets can prove that HANRec outperforms
state-of-the-art models for the recommendation and link
prediction tasks.
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