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Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate
downstream applications, such as finding the most similar chemical compounds similar to a query com-
pound or Fewshot 3D Action Recognition. Recently, some graph similarity computation models based on
neural networks have been proposed, which are either based on graph-level interaction or node-level
comparison. However, when the number of nodes in the graph increases, it will inevitably bring about
reduced representation ability or high computation cost.
Motivated by this observation, we propose a graph partitioning and graph neural network-based

model, called PSimGNN, to effectively resolve this issue. Specifically, each of the input graphs is parti-
tioned into a set of subgraphs to extract the local structural features directly. Next, a novel graph neural
network with an attention mechanism is designed to map each subgraph into an embedding vector. Some
of these subgraph pairs are automatically selected for node-level comparison to supplement the
subgraph-level embedding with fine-grained information. Finally, coarse-grained interaction information
among subgraphs and fine-grained comparison information among nodes in different subgraphs are inte-
grated to predict the final similarity score. Experimental results on graph datasets with different graph
sizes demonstrate that PSimGNN outperforms state-of-the-art methods in graph similarity computation
tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Graph similarity computation, which predicts a similarity score
between one pair of graphs, has been widely used in various fields,
such as recommendation system [42,16], computer vision [15,35]
and so on. However, most of the standard distance measures eval-
uating how similar two graphs are, like Graph Edit Distance (GED)
[7], and Maximum Common Subgraph (MCS) [9], still suffer from
large search spaces or excessive memory requirements. They are
weak to compute exact graph distance for graphs with more than
16 nodes [5]. Traditional graph similarity computation methods
such as A* [37], Hungarian [25,36], VJ [12,18], and Beam[31], try
to use pruning strategy or find approximate values instead of exact
similarity to alleviate the problem. Nevertheless, by performing
directly from the graphs’ edges and node characteristics, these
exact and approximate algorithms still have a high time-
complexity for computing the GED or MCS between two graphs
and are hard to be generalized to large graphs in real applications.

With the rapid development of deep learning technology, graph
neural networks that automatically extract the graph’s structural
characteristics provide a new solution for similarity computation
and matching of graph structures. Recently, researchers proposed
some representative graph deep learning models for graph similar-
ity computation. During the training stage, these models fit the
similarity ground truth (label) in a supervised learning way and
learn a mapping between a pair of graph inputs and the similarity
score. Hence they are more time-efficient compared with tradi-
tional graph similarity computation methods during testing or
actual applications [2].

In general, graph deep learning models for graph similarity
computation can be categorized into two classes, namely embed-
ding model and matching model (shown in Fig. 1). Embedding-
models (e.g., GCN-Max, GCN-Mean [11]) directly embed the whole
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Fig. 1. Two deep learning frameworks for graph similarity computation: embedding-model and matching-model. jGij and jGjj represent the number of nodes of Gi and Gj ,
respectively, and D represents the embedding dimension. The red dashed box in Gi represents the subgraph of the Gi .
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graph to a graph-level vector and compute the similarity between
vectors as the similarity of the corresponding graph pairs. These
methods are time-efficient but are not effective due to the loss of
much node-level comparison information. Matching-models (e.g.
SimGNN [2], GSimCNN [4], GMN [27]) embed each node into a
low-dimension vector which encodes both its own feature infor-
mation and its local connection relationship information, and con-
tain different pairwise interaction strategies to compute the graph
similarity score. However, the pairwise node comparison process
in these models needs at least quadratic computation cost with
respect to the number of nodes in the graphs so that the problem
of not being time-efficient remains on large-scale graph similarity
computation.

In this paper, we focus on large graph similarity computation
and try to address the following two challenges:

� For large-scale graphs, embedding-models are difficult to learn
one vector representing the various features of a graph, so they
always lose some prediction accuracy. On the other hand,
although the matching-models contain fine-grained interaction
and comparison of the graph pair, they can not efficiently calcu-
late the similarity between graphs with many nodes. Thus, this
challenge is how to achieve the trade-off between the accuracy
and the efficiency of computing large graph similarity?

� Comparing with the graphs with fewer nodes, graphs with
many nodes always contain distinct local features. For example,
protein molecules are composed of many amino acids, deter-
mining the different functions of protein molecules. At the same
time, amino acids are also composed of several atoms. As shown
in Fig. 1, the subgraph in the red dashed box can be compared to
an amino acid containing several atoms. When analyzing a pro-
tein molecule’s function, only focusing on the whole protein
molecule (the graph-level embedding) or only considering the
atoms (the node-level embedding) may lose these local struc-
tural features. Thus, this challenge is how to learn embeddings
capturing the local structure of large graph?

To solve these challenges, we propose an end-to-end model

PSimGNN, i.e., Partition based Similarity Computation via Graph

Neural Networks. First, the proposed model partitions each of the
input graph into a set of subgraphs. To extract these local struc-
tural features, we design a novel graph neural network with an
attention mechanism to map every subgraph into a subgraph-
level embedding vector. Next, we design an information interac-
tion architecture with two modules to balance the subgraph-
level and node-level information. The first module conducts
coarse-grained similarity computation by computing the similarity
of these subgraph-level embedding vectors. The second module
conducts fine-grained similarity computation by automatically
selecting some of the subgraph pairs with higher similarity for
node-level comparison, thus supplementing the subgraph-level
comparison with fine-grained information. Finally, the model inte-
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grates coarse-grained interaction information between subgraphs
and fine-grained comparison information between nodes in differ-
ent subgraph pairs to predict the final similarity score. We evaluate
the effectiveness and efficiency of our model on large graph simi-
larity computation task. The experimental results show that
PSimGNN outperforms the state-of-the-art graph similarity com-
putation models. To summarize, our major contributions are:

� We first propose the graph partitioning based framework to
address the challenging problem of similarity computation
between large graphs. This framework achieves a good trade-
off between accuracy and efficiency.

� We propose a novel model that effectively extracts and aggre-
gates local information to conduct subgraph-level comparison.
This can resolve the under-representation ability or high com-
putation cost of many graph deep learning-based similarity
computation models.

� We conduct extensive experiments on a prevalent graph simi-
larity/distance metric, GED, based on different size datasets.
These experiments and theoretical analysis demonstrate the
effectiveness and efficiency of PSimGNN model in graph simi-
larity computation tasks.

The rest of this paper is organized as follows. In Section 2, we
discuss the related works. In Section 3, we describe our model
PSimGNN for graph similarity computation in detail and analyze
the computation cost in theory. In Section 4, we compare the pro-
posed model with some existing graph similarity computation
methods on both synthetic and real-world datasets, introduce
the experiment settings, and present the experimental results. In
Section 5, we offer in-depth discussions and conclusions, and point
out future research directions.

2. Related work

In this section, we introduce the related works about graph par-
titioning, graph neural networks, graph similarity metrics and
graph similarity computation.

2.1. Graph partitioning

Graph partitioning is a way of cutting a graph into smaller
pieces, while the nodes of these pieces are mutually exclusive with
each other. Graph partitioning is an effective way for complexity
reduction or parallelization [6] and the partitioned graph may be
better suited for analysis and problem-solving than the original
[19]. With the advent of ever-larger instances in applications such
as scientific simulation, social networks, or road networks, graph
partitioning, therefore, becomes more and more critical, multi-
faceted, and challenging [6]. Since graph partitioning is a hard
problem, a variety of techniques and solutions are proposed. Global
algorithms work with the entire graph and compute a solution
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directly. These solutions can be improved using several heuristics,
and high-quality graph partitioning solvers improve starting solu-
tions. The most successful heuristic for partitioning large graphs is
the multilevel graph partitioning approach. It consists of three
phases: coarsening, initial partitioning, and uncoarsening [6].

2.2. Graph neural networks

Graph Neural Networks (GNNs) is a useful framework for repre-
sentation learning of graphs, directly operating on the graph struc-
ture. GNNs follow a neighborhood aggregation scheme, where the
representation vector of a node is computed by recursively aggre-
gating and transforming representation vectors of its neighboring
nodes. Many GNN variants have been proposed and have achieved
state-of-the-art results on both node and graph classification tasks
[29,20]. Despite GNNs revolutionizing graph representation learn-
ing, there is a limited understanding of their representational prop-
erties. Studies [43] have shown that popular GNN variants (such as
graph convolutional networks and GraphSAGE [13]) have limited
discriminative power, and they cannot learn to distinguish certain
simple graph structures. In this paper, we use Graph Isomorphism
Network (GIN) [43] since GIN has been proven to be theoretically
the most powerful GNN under the neighbor aggregation frame-
work [43].

2.3. GED & MCS

Graph Edit Distance (GED) [7] can be considered as an extension
of the String Edit Distance [26] metric, which is defined as the min-
imum cost required to convert one graph to another through a
sequence graph editing operations. Maximum Common Subgraph
(MCS) [9] is equivalent to GED under the same cost function [8].
Both are the most common ways to calculate the similarity of
graphs or the distance between graphs, which is the core operation
of graph similarity search and many applications. However, this
core operation, computing the GED or MCS between two graphs,
is known to be NP-complete [9,45]. For a pair of graphs with more
than 16 nodes, even the state-of-the-art algorithms cannot reliably
compute the exact GED within reasonable time [5]. So, instead of
calculating the exact similarity, some methods can find approxi-
mate values in a fast and heuristic way. However, these methods
usually require complicated design and the computation cost is
still sub-exponential or polynomial in the number of nodes in
the graphs, such as Hungarian [25,36], VJ [12,18], Beam [31], etc.

2.4. Graph similarity computation

Computing the similarity of graphs is a basic and essential oper-
ation in many applications, including graph classification and clus-
tering [30], social group network similarity identification [39,32],
object recognition in computer vision [10], and biological molecu-
lar similarity search [24,40], etc. Graph similarity computation for
metrics such as Graph Edit Distance (GED) is typically NP-hard, and
existing heuristics-based algorithms usually achieve an unsatisfac-
tory trade-off between accuracy and efficiency. Compared with tra-
ditional algorithms, which typically involve knowledge and
heuristics specific to a metric, the neural network approaches learn
graph similarity from data. During training, the parameters are
learned by minimizing the loss between the predicted similarity
scores and the ground truth; during testing, unseen pairs of graphs
can be fed into these models for fast approximation of their simi-
larities [3].

This paper is the first attempt towards large-scale graph simi-
larity computation with deep learning methods. Current deep
learning methods for graph similarity computation can be classi-
fied as embedding models and matching models. Embedding mod-
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els such as GCN-Mean and GCN-Max, directly map each graph to a
feature vector and compute the similarity score between these fea-
ture vectors. Embedding models are efficient, but the performance
is usually low due to the lack of interactions across graphs. Match-
ing models, including GMN, SimGNN, and GSimCNN, embed a pair
of graphs at the same time with a cross-graph matching mecha-
nism. They are more accurate, but the cross-graph matching pro-
cess often brings a significant increase in time consumption (at
least quadratic computation cost over the number of nodes). Thus,
our work explores how to compute the similarity between large-
scale graphs while maintaining high accuracy efficiently.

3. The proposed approach: PSimGNN

In this section, we formally define the problem of graph similar-
ity computation, and then introduce the proposed method

PSimGNN, i.e., Partition based Similarity Computation via Graph

Neural Networks, which is an end-to-end neural network-based
method to solve graph similarity computation problem. PSimGNN
consists of four parts: (1) graph partitioning; (2) subgraph-level
embedding interaction; (3) node-level comparison; (4) graph sim-
ilarity score computation. An overview of PSimGNN is shown in the
Fig. 2.

3.1. Problem definition

We define an undirected and unweighted graph G ¼ fV ; Eg,
where V ¼ fv1; . . . ;v jV jg is a set of nodes and E ¼ fe1; . . . ; ejEjg is a
set of edges. H 2 RN�D represents node features, where N is the
number of nodes in graph G (or N = jV j) and D is the dimension
of node feature vectors. We transform GED into a similarity metric
ranging between 0 and 1. Our goal is to learn a neural network-
based function that takes two graphs as input and outputs the sim-
ilarity score that can be transformed back to GED through a one-to-
one mapping.

3.2. Graph partitioning

Most neural network-based graph similarity computation mod-
els use appropriate mechanisms to generate graph-level embed-
dings and node-level embeddings and calculate the graph
similarity score between different graphs combining a coarsen-
grained graph-level interaction and a fine-grained node-level com-
parison. However, for graphs with a large number of nodes, these
approaches may have several limitations:

� Only graph-level embedding may have limited ability to repre-
sent the whole graph. Sometimes we have to pay attention to
some local structure characteristics.

� Due to a large number of nodes, the node-level comparison will
bring high computation cost, and too much matching between
nodes far away will also introduce some noise.

To overcome these limitations and better reflect large graphs’
local structure characteristics, we partition a graph into kf sub-
graphs using the graph partitioning method. In our experiments,
the Fluid Communities algorithm ðFluidCÞ [34] shows the best per-
formance. Graph partitioning contains three steps:

� Step-1: Choose kf nodes randomly in the graph as the initial
nodes of kf communities.

� Step-2: Iterate over all nodes in random order and update each
node’s community based on its community and the communi-
ties of its neighbors.

� Step-3: Repeat step-2 until convergence.



Fig. 2. The general architecture of our model. The red arrows denote the data flow for subgraph-level interaction and the blue arrows denote the data flow for node-level
comparison. After the graph partitioning method, only the top m (here m ¼ 3) subgraph pairs with the highest similarity scores will conduct the node-level comparison.
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Here we focus on its updating strategy, or more precisely, step
2. For a graph G ¼ ðV ; EÞ composed of a set of vertices V and a set of
edges E, FluidC initializes kf fluid communities C ¼ fc1; c2; . . . ; ckf g,
where 0 < kf 6 jV j. Each community c 2 C is initialized in a differ-
ent and random vertex v 2 V . Each initialized community has an
associated density d in the range (0,1]. More precisely, the density
of a community is the inverse of the number of vertices that make
up the community: dðcÞ ¼ 1=jv 2 cj. We can notice that a fluid
community composed of a single vertex (for example, each com-
munity at initialization) has the largest possible density (d ¼ 1:0).

The algorithm traverses all V in random order and uses the
updating rule to update the community to which each vertex
belongs. When the vertex distribution to the community has not
changed in two consecutive steps, the algorithm has converged
and ended. Next, we focus on its updating rules.

Theupdating rule for a specific vertex v returns the communityor
communities with maximum aggregated density within the ego
networkof v. Theupdating rule is formallydefined inEqs. (1) and (2).

C0
v ¼ argmaxc2C

X
w2fv;CðvÞg

dðcÞ � dðcðwÞ; cÞ ð1Þ

dðcðwÞ; cÞ ¼ 1; if cðwÞ ¼ c

0; if cðwÞ – c

�
ð2Þ

where v is the vertex which is going to be updated, C0
v is the set of

candidates to be the new community of v;CðvÞ are the neighbours
of v ;dðcÞ is the density of community c; cðwÞ is the community ver-
tex w belongs to and dðcðwÞ; cÞ is the Kronecker delta.

In some exceptional cases, C0
v can contain multiple community

candidates with equal maximum sum. If C0
v has the current com-

munity of vertex v, then vwill not change its community. However,
if C0

v does not contain the current community of v, the update rule
will select a random community in C0

v as the new community of v.
Here we give a formal representation of the updating rule:

c0ðvÞ ¼ x � SðC0
vÞ; if cðvÞ R C0

v

cðvÞ; if cðvÞ 2 C0
v

�
ð3Þ

where c0ðvÞ is the community of the vertex v of the next step, C0
v is

the set of candidate communities, and x � SðC0
vÞ is the random

sampling from the discrete uniformly distribution of C0
v .

The entire process can refer to Fig. 3. At all times, each commu-
nity has a total density of 1, which is equally distributed among the
nodes it contains. If a node changes its community, node densities
of affected communities are adjusted immediately. When a com-
plete iteration over all nodes is done, such that no node changes
the community it belongs to, the algorithm has converged and
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returns. Through FluidC, we can obtain a series of connected sub-
graphs (or communities) that can reflect local features. The simi-
larity computation at the subgraph-level and node-level can be
performed later.

3.3. Subgraph-level comparison

One useful graph-level embedding can efficiently preserve the
structural information, and the similarity between two graphs
can be computed by interacting with the two graph-level embed-
dings. For graphs with many nodes, by comparing the similarity
between different subgraphs generated by some graph partitioning
methods (like FluidC in our experiment), the local similarity
between two large graphs can be better reflected. The entire pro-
cess involves the following three parts: (1) Subgraph node
embedding, which embeds the nodes of each subgraph into vec-
tors, encoding its structural information; (2) Subgraph embed-
ding, which embeds each subgraph into one graph-level vector
considering the context information through an attention-based
node aggregation way; (3) Subgraph-subgraph interaction, which
receives two subgraph-level embeddings and returns the interac-
tion score representing the similarity between subgraphs. Next,
these subgraph interaction scores are further reduced to a final
similarity score through Multilayer Perceptron, representing the
similarity of the pair of large graphs. And the parameters involved
in these three steps can be updated by comparing the final similar-
ity score with the ground truth similarity score in the training
process.

3.3.1. Part I: Subgraph node embedding
Among the existing multiple graph neural network methods,

we choose Graph Isomorphism Network (GIN) [43] because it
can not only efficiently gather information of neighboring nodes
like Graph Convolutional Networks (GCN) [23,11] and GraphSAGE
[13], but also learn accurate structural information. The hidden
layer can be written as follow:

hðkÞ
v ¼ MLPðkÞ ð1þ �ðkÞÞ � hðk�1Þ

v þ
X

u2NðvÞ
hðk�1Þ
u

 !
; ð4Þ

where hðkÞ
v is the k-th layer node embedding for the node v;MLP

means Multilayer Perceptron [33], � is a learnable parameter and
NðvÞ represents the neighbor nodes of node v.

We treat each node as the same label for graphs with unlabeled
nodes, thereby obtaining the same constant as the initial represen-
tation. After multiple GIN layers (3 layers in our experiment), the
node-level embeddings information will be fed into the attention
module as described below.



Fig. 3. The workflow of FluidC for kf ¼ 3 communities (red, green and blue). Each node assigned to a community is labeled with the density of that community. The update
rule is evaluated on each step for the node highlighted in black. Only the schematic results of the first iteration are given here.
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3.3.2. Part II: Subgraph embedding
This model uses a weighted sum method, where we use an

attention mechanism to generate subgraph-level embeddings with
a weighted sum method. Instead of averaging all nodes or giving
each node different weights according to the node’s degree, our
attention module focuses more on the nodes that can better repre-
sent the full graph structure information.

After learning the node-level embedding, the node embeddings
in subgraph can be expressed as X 2 RNs�D, where Ns represents the
number of nodes in the subgraph, and D is the dimension of each
node embedding. The representation of the whole subgraph infor-
mation can be written as z 2 RD, which is a non-linear expression
of the average value of N nodes embedding:
z ¼ tanhðð1N

PN
i¼1uiÞWzÞ, where Wz is a learnable weight matrix.

By learning the weight matrix, z provides the subgraph’s global
structure and feature information suitable for a given similarity
measure. Then based on z, we can calculate an attention weight
for each node. In short, attention works as a memory-access mech-
anism by generating larger attentive coefficients for input features
that are relevant to the learning task. In this paper, we adopt an
attention mechanism to generate subgraph-level representation.
For node i, to notify the global information, we take the inner pro-
duct between its node embedding xi and z. That is to say, the nodes
that are more capable of expressing the features of the graph
should be given higher weights. The sigmoid function
rðxÞ ¼ 1þ exp�x is applied to the result to ensure that the attention
weight is between (0, 1). Finally, subgraph embedding h 2 RD is the
weighted sum of node embedding:

h ¼
XN
j¼1

rðxj � zÞxj ¼
XN
j¼1

r xj � tanh
1
N

XN
i¼1

ui

 !
Wz

 ! !
xj; ð5Þ

where � represents the dot product between vectors.

3.3.3. Part III: Subgraph-subgraph interaction
Through the node embedding and attention mechanism men-

tioned above, we have achieved subgraph-level embedding. Good
node embedding and attention mechanisms should embed graphs
with similar structures and similar features in similar positions in
space, so their distance should be relatively small. Here we use the
cosine similarity to measure the similarity between a pair of sub-
graph embeddings:
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sðh1; h2Þ ¼ cosðh1;h2Þ ¼ h1 � h2

jjh1jj2jjh2jj2
; ð6Þ

where jjhjj2 is the 2-norm of h.
A pair of large graphs are partitioned into k subgraphs respec-

tively, and the similarity between two subgraphs between large
graphs is calculated using the method mentioned above. After that,

k2 similarity scores are obtained, and Multilayer Perceptron (MLP)

is used to map these k2 scores to the final similarity score to char-
acterize the similarity between the pair of large graphs:

sðG1;G2Þ ¼ MLP �k
i¼1;j¼1

sðGi
1;G

j
2Þ

� �
; ð7Þ

where � is the concatenation operation, sðG1;G2Þ represents the

similarity score between the pair of large graphs and sðGi
1;G

j
2Þ rep-

resents the similarity score between the i-th subgraph of G1 and the
j-th subgraph of G2.

3.4. Node-level comparison

Only considering subgraph-level embedding interaction may
lose some fine-grained node-level information, so we design the
following node-level comparison component utilizing the interac-
tion between nodes in subgraphs.

This component accepts a pair of subgraphs as its input, and cal-
culates the similarity between them through the comparison of
nodes within each subgraph and between the pair of subgraphs.

An overview of the interaction is shown in the Fig. 4, where hðtÞ

represents the node embeddings in each subgraph after k-th prop-
agation layer. We assume that the input subgraph pair can be rep-
resented as Gm

1 ;G
n
2, and their node sets and edge sets are Vm

1 ;V
n
2 and

Em
1 ; E

n
2, respectively. After t iterations within the graph and between

graphs, the embedding of node i can be represented as hðtÞ
i . In each

interaction within the subgraph, the influence of node j on node i
is:

mj!i ¼ MLPðhðtÞ
i � hðtÞ

j Þ;8ði; jÞ 2 Em
1 [ En

2 ð8Þ
Then is the interaction between subgraphs for cross-graph com-

munication. An attention mechanism is used to give different
weights to the nodes of another subgraph to indicate the impor-
tance of different nodes j to nodes i:



Fig. 4. Propagation layer in node-level comparison. Each round of iteration is based on the embeddings of the previous round and the node-level comparison within each
graph and between graphs.
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aj!i ¼
expðhðtÞ

i � hðtÞ
j ÞP

j0 expðhðtÞ
i � hðtÞ

j0 Þ
ð9Þ

Through this attention mechanism, we magnify the influence
between similar nodes in one pair of subgraphs, and use lj!i to
represent the interaction between node j and node i in different
subgraphs:

lj!i ¼ aj!iðhðtÞ
i � hðtÞ

j Þ;8i 2 V1; j 2 V2; or 8i 2 V2; j 2 V1 ð10Þ
After obtaining the interactive information within each sub-

graph and between one pair of subgraphs, we merge the t-th round
propagation node information with it, and then generate the
ðt þ 1Þ-th round propagation node information:

hðtþ1Þ
i ¼ MLP hðtÞ

i �
X
j

mj!i �
X
j0
lj0!i

0
@

1
A ð11Þ

After iterating through T rounds, we get the embedding of each

node, denoted as hðTÞ, and then through a self-attention mechanism
aggregation layer, we get a subgraph-level embedding:

hagg ¼ MLPagg

X
i2V

rðMLPattðhðTÞ
i ÞÞ �MLPðhðTÞ

i Þ
 !

ð12Þ

After obtaining the fine-grained embedding of each subgraph,
we use the cosine similarity to measure the similarity between
one pair of graphs, which is expressed as:

sðhagg1;hagg2Þ ¼ cosðhagg1;hagg2Þ ¼ hagg1 � hagg2

jjhagg1jj2jjhagg2jj2
ð13Þ
3.5. Graph similarity score computation

It is worth mentioning that through the previous graph parti-
tioning, each large graph is partitioned into k subgraphs, and there

will be k2 pairs of subgraphs. Here, we sort the subgraph-level sim-
ilarities obtained before, and only the pairs with top m similarity
score will perform a node-level comparison. We use ðMLPÞ to inte-

grate k2 coarse-grained scores and m fine-grained scores to finally
get the similarity between the large graphs:

sðG1;G2Þcoarse ¼ MLP �k
i¼1;j¼1

sðGi
1;G

j
2Þ

� �
ð14aÞ

sðG1;G2Þfine ¼ MLP �m
t¼1

sðGit
1 ;G

jt
2 Þ

� �
ð14bÞ

sðG1;G2Þ ¼ MLP sðG1;G2Þcoarse � sðG1;G2Þfine
� �

ð14cÞ
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After the similarity score, sðG1;G2Þ 2 R, is predicted, it is com-
pared with the ground truth similarity score, sðG1;G2Þgt 2 R, using
the following mean square error loss function:

L ¼ 1
jTj

X
ði;jÞ2T

sðG1;G2Þ � sðG1;G2Þgt
� �2

ð15Þ

,where T is the training graph pairs and jTj is the total number of
the training graph pairs.

3.6. Efficiency analysis

For a pair of input graphs G1 and G2 with E1; E2 edges and N1 and
N2 nodes separately, we can evaluate the efficiency of several types
of models that are commonly used in graph similarity
computation.

Then we analyze the efficiency of PSimGNN and discuss how it
can improve the efficiency by graph partitioning. Note that there
exists a lot of variance for each model. We only use the simplest
cases.

3.6.1. Embedding models
The embedding model refers to calculating the similarity

between graphs by generating graph-level embeddings. Assuming
the simplest case here, we only visit every edge once and deploy
two computational operations on the two nodes it connects, con-
tributing to the feature of local topology. Thus the computation
cost for these cases is O maxðE1; E2Þð Þ.

3.6.2. Matching models
The matching model refers to calculating the similarity between

graphs by matching (graph-level interaction or node-level compar-
ison). Assuming the simplest case here, we compute the relation-
ship across N1 and N2. This part involves N1 � N2 computational
operations because we have to calculate the connection between
every node in G1 to all nodes in G2. For the commonmatching mod-
els, both SimGNN and GSimCNN pad fake nodes to the smaller
graph at the node-level comparison to emphasize their size differ-
ence. GMN also has the interaction of nodes within each graph, so

the final computation cost is OðmaxðN1;N2Þ2Þ.

3.6.3. PSimGNN
The computation cost of PSimGNN can be divided into three

parts to analyze. (1) Graph Partitioning. In our model, we choose
FluidC as the graph partitioning method. As analyzed in Section 3.1,
it updates node information based on neighbor nodes or the con-
nected edges of nodes, so it belongs to the fastest andmost scalable
family of algorithms in the literature with a linear computation
cost of OðEÞ [34]. Notice that the partitioned subgraphs can be
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pre-computed and stored. In the setting of graph similarity search,
the unseen query graph only needs to be partitioned once to obtain
its subgraphs. (2) Subgraph-level Embedding Interaction. The com-
putation cost associated with the generation of node-level and
subgraph-level embeddings is OðEÞ [23]. Assuming that each graph
is partitioned into k subgraphs and the embedding dimension at
the subgraph-level is D, we use cosine to measure the similarity
between embeddings. The computation cost in the subgraph inter-

action part is OðDk2Þ. As mentioned above, the sub-graph level and
node-level embedding can also be saved in advance, which signif-
icantly saves graph similarity query cost. (3) Node-level Compari-

son. According to the k2 similarity scores obtained by subgraph-
level interaction, we select top m subgraph pairs with the highest
similarity scores for node-level comparison. After partitioning, the
average number of nodes in each subgraph is N1=k or N2=k. As ana-
lyzed in Section 3.5.2, the average node-level comparison compu-

tation cost of one pair of subgraphs is OðmaxðN1=k;N2=kÞ2Þ. Since
we choose m pairs, the total computation cost of this part is

Oðm�maxðN1=k;N2=kÞ2Þ or Oðm=k2 �maxðN1;N2Þ2Þ, where the

range ofm belongs to f0;1;2; . . . ; k2g. The parameterm can be used
as a hyperparameter to adjust the relationship between accuracy
and time. When m is set to zero, our model only calculates the
coarse-grained subgraph similarity. At this time, the model’s com-
putation cost is OðEÞ, where E is the number of edges in the large

graph. When m is set to k2, our model performs fine-grained sim-
ilarity calculation for each pair of subgraphs, and the computation
cost of the model is OðN2Þ, where N is the number of nodes in the
large graph. For occasions with time requirements, we can only
perform coarse-grained matching between subgraphs. For occa-
sions where accuracy requirements are relatively high, we can per-
form a fine-grained node-level comparison to improve model
performance. Therefore, according to specific application scenarios,
trade-offs between time and accuracy can be made to choose the
best solution.
3.6.4. Similarity search
In the similarity search problem, we assume that we have a

database consisted of K graphs, each of which has N nodes and E
edges, for simplicity. We need to finish computing the similarity
between all the graphs in the database and an incoming new graph
(also with N nodes and E edges). In embedding models, we can
compute all the feature vectors for graphs in the database at the
very beginning. And then, when the new graph comes, we encode
it to its feature vector and only compute similarity based on the
feature vectors. Thus the computation cost is OðE� KÞ. We can only
forward pairs of graphs in matching models every time because of
the computation across graphs. Thus the computation cost is extre-
mely high OðN2 � KÞ. And obviously, the computation cost for our

framework is Oðm=k2 � N2 � K þ E� KÞ. Whenm is small, the com-
putation cost becomes OðE� KÞ; when m is large, the computation

cost becomes Oðm=k2 � N2 � KÞ. This also reflects the adjustability
of our model. It is worth mentioning that our model is not suitable
for very dense graphs because it is challenging to get subgraphs
that can better reflect local information. In our discussion, E 	 N2.
1 http://www.imdb.com/interfaces#plain
4. Experiments

4.1. Datasets

In this section, we first introduce a graph similarity computa-
tion dataset based on Barab ási-Albert preferential attachment
model (BA-model) [17], which consists of three sub-datasets: BA-
60, BA-100, BA-200, named according to the average number of
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nodes per graph. A real-world dataset is also introduced to better
demonstrate our framework’s effectiveness: The Internet Movie
Database (IMDB).1 The details about these datasets are as following,
and we compare these with other well-known datasets used for
graph similarity computation.

4.1.1. Barabási-Albert model dataset
Here we introduce the Barabási-Albert model (BA-model) con-

cept, the rules for generating a Barabási-Albert graph (BA-graph),
and how our datasets are produced. The BA-model [17] is an algo-
rithm for generating random scale-free networks using a preferen-
tial attachment mechanism. Several natural and human-made
systems, including the Internet, the world wide web, citation net-
works, and some social networks, are thought to be approximately
scale-free and contain few nodes (called hubs) with unusually high
degrees compared to the other nodes of the network. The BA-
model tries to explain such nodes in real networks and incorpo-
rates two important general concepts: growth and preferential
attachment, which exist widely in real networks. Growth means
that the number of nodes in the network increases over time and
preferential attachment indicates that the more connected a node
is, the more likely it is to receive new links. Nodes with a higher
degree have a more vital ability to grab links added to the network.

The BA-model begins with an initial connected network of m0

nodes. New nodes are added to the network one at a time. Each
new node is connected tom 6 m0 existing nodes with a probability
proportional to the number of links that the existing nodes already
have. Formally, the probability pi that the new node is connected to

node i is pi ¼ kiP
j
kj
[1], where ki is the degree of node i and the sum

is made overall pre-existing nodes j (i.e. the denominator results in
twice the current number of edges in the network). Heavily linked
nodes (‘‘hubs”) tend to quickly accumulate even more links, while
nodes with only a few links are unlikely to be chosen as the desti-
nation for a new link. The new nodes have a ‘‘preference” to attach
themselves to the already heavily linked nodes.

Our datasets are made up of some basic graphs and derivative
graphs that have been trimmed, which solve several problems:

� When generating a graph with a large number of nodes ran-
domly, there is a high probability that the generated graphs
are dissimilar between each other, which results in an uneven
similarity distribution after normalization.

� Due to a large number of nodes in each graph, the approximate
GED algorithm cannot guarantee that the calculated similarity
can fully reflect the graph pairs’ similarity. We trim and gener-
ate derivative graphs while recording the number of trimming
steps. These steps and the values calculated by the approxima-
tion algorithm take the minimum value as the GED with the
basic graph, thereby obtaining a more accurate similarity.

� By trimming different steps, we can generate graphs with dif-
ferent similarities, which is more conducive to the experiment
of graph similarity query.

There are three trimming methods: delete a leaf node, add a
node, and add an edge. Since deleting an edge may have a greater
impact on the generated graph, we will not consider this method.
We try to trim the base graph without changing the base graph’s
global features to generate more similar graph pairs. In this way,
we get three datasets according to the following generation rule.

A BA-graph of n nodes is grown by attaching new nodes, each
with m edges that are preferentially attached to existing nodes
with a high degree. We set n to be 60, 100, and 200, respectively,
and m is fixed to 1 to generate basic graphs. Each sub-dataset gen-
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erates two basic graphs, and each base graph is trimmed with dif-
ferent GEDs. For each basic graph, generate 99 trimmed graphs in
the range of GED 1 to 10. So each sub-dataset consists of two basic
graphs and 198 trimmed graphs.

4.1.2. The internet movie database
The Internet Movie Database (IMDB) consists of the entities of

movies, actors, producers, and their relationships. We filter the
original IMDB dataset based on two principles: (1) graphs that
have 15 or more nodes, (2) graphs where the ratio of the number
of edges to the number of nodes is less than 5. The graphs filtered
in this way have a sufficient number of nodes, and they are not too
dense, which are suitable for partitioning in the task of graph sim-
ilarity computation. In this paper, we call the new dataset IMDB-X.

4.1.3. Comparison with other datasets
Because in other public datasets used in [2–4], such as AIDS [28]

and LINUX [41], the number of nodes in each graph is relatively
Table 1
Statistics of datasets.

Dataset Graph Meaning #Graphs #Pairs Min #Nod

AIDS Chemical Compounds 700 490 K 2
LINUX Program Dependency Graphs 1000 1 M 4
IMDB Actor/Actress Ego-Networks 1500 2.25 M 7

BA-60 Barabási-Albert graph with 60 nodes 200 40 K 54
BA-100 Barabási-Albert graph with 100 nodes 200 40 K 96
BA-200 Barabási-Albert graph with 200 nodes 200 40 K 192
IMDB-X Filtered Actor/Actress Ego-Networks 220 48.4 K 15

Fig. 5. Nodes degree distribut
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small and local structures are not obvious, the characteristics of
the entire graph can be easily represented. As for IMDB [44],
(named ‘‘IMDB-MULTI”) there are some graphs with a large num-
ber of nodes. However, these graphs are relatively dense, and too
many edges between nodes will make the local structures less
obvious. So we filter the IMDB as IMDB-X and focus on the BA data-
sets and IMDB-X.

In view of this, we artificially made three BA-datasets, which
have a large number of nodes and have graphs with obvious local
structures by using the BA-model characteristics. Table 1 shows
the comparison of different datasets for graph similarity computa-
tion. Fig. 5 shows the nodes degree distribution of BA-model data-
sets and IMDB-X. From these charts, we can see that the average
number of nodes to the number of edges in the BA-model datasets
is approximately equal to 1. Graphs are relatively sparse and suit-
able for extracting local structural features by graph partitioning.
The degree distribution indicates that most nodes have relatively
low degrees, and only a few have high degrees. These nodes have
es Max #Nodes Avg #Nodes Min #Edges Max #Edges Avg #Edges

10 8.90 1 14 8.80
10 7.58 3 13 6.94
89 13.00 12 1467 65.95

65 59.50 54 66 60.06
105 100.01 96 107 100.56
205 199.63 193 206 200.16
52 21.35 33 186 74.20

ion of BA-model datasets.
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a greater probability of becoming the center node of the subgraph.
The partitioning results of the two graphs in the BA-60 dataset and
two graphs in IMDB-X are shown in Fig. 6. Through graph parti-
tioning, obvious local structural features can be extracted, which
is also a characteristic of our BA-model datasets and IMDB-X.

4.2. Data preprocessing and ground-truth generation

For each dataset, we randomly split 60%, 20%, and 20% of all
graphs as the training set, validation set, and test set, respectively.

Due to the large number of nodes in our data set, A* [37] algo-
rithm cannot be used to calculate the GED. We used the smallest
distance calculated by three well-known approximation algo-
rithms, Hungarian [25,36] and VJ [12,18], and Beam [31]. However,
these algorithms are also difficult to ensure a certain accuracy in
this case. So we also added the GED value generated when trim-
ming the graph as another evaluation indicator. When each graph
is trimmed, we will get a GED value to record the number of trim-
ming steps. Every time a leaf node is deleted in this experiment,
the edge it connects will also be deleted. In this case, the GED
between the derived graph and the basic graph increases by 2;
and every time an edge is added, GED increases by 1.

As shown in Fig. 7, when generating a derivative graph with a
specific GED from the basic graph, we randomly select among
the above three methods (randomly delete a leaf node, add a leaf
node or add an edge) to generate a set of operations, and the
sum of GED accumulated by all operations is the specific GED
value. We take the minimum value of the trimming GED and the
calculated GED with these three algorithms as the final GED value.
Here, the minimum value is taken instead of the average value
because GED is the upper bound. The real GED value must be less
than or equal to the GED PSimGNN-up only uses the subgraph-
Fig. 6. Examples of graph partition from BA-60 and IMDB-X
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level embeddings and achieves the same level of evaluation results
as other matching models, which proves the effectiveness of intro-
ducing subgraphs to help the large graphs similarity computation.
PSimGNN-k, which uses k subgraph pairs for node-level compar-
ison, achieves better results than PSimGNN-up on all evaluation
metrics. Our model, PSimGNN, consistently achieves the best or
second-best under most evaluation metrics across the three data-
sets within the neural network-based methods. In some ranking
indicators (q; s, and p@10) of BA-100 and BA-200, although
PSimGNN is not optimal, which may be caused by the randomness
of graph partitioning, it still gets close to GSimCNN and GMN in
performance. This implies that our model introduces a more flexi-
ble framework and performs the same level of accuracy as other
neural network-based models. And as the number of subgraph
pairs using node-level comparison increases, the model contains
more information. The corresponding evaluation results become
better, which is also in line with our expectations. As mentioned
before, for graphs in IMDB-X, there is no trimming steps. The Beam
algorithm’s accuracy is higher than the other two, so most of the
ground truth is the approximate GEDs calculated by Beam. In this
case, Beam shows the best performance in the Table 6, which also
meets our expectations. At the same time, PSimGNN also shows the
best performance compared with other deep learning methods on
the IMDB dataset, which proves that the idea of graph partitioning
is effective in the task of graph similarity computation.

As shown in Table 7, we recorded the running time for different
models on test datasets. It is worth noting here that these models
are implemented in different ways, and the framework itself may
cause the time issue. In this case, it isn’t easy to judge the compu-
tation cost directly by the running time is consumed. For example,
GCN-Mean and GCN-Max, although their computation cost is OðNÞ,
to get the best performance, there are several layers of node
datasets. Different colors represent different subgraphs.



Fig. 7. Generate a derivative graph with a GED of 6 from the basic graph. It is not necessary to use all three methods in real trimming. Here is only one case.
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embedding, so the time consumed is not the lowest. And
GSimCNN, with OðN2Þ computation cost, has the fastest running
time due to the optimization of CNN in the framework used.

However, since we used the GMN code for reference when
implementing node-level interaction in PSimGNN, the two still
have a comparative value. By observing the running time of these
two methods on three datasets of different scales, we can find that
when the number of graph nodes is small, PSimGNN, which parti-
tions first and then calculates the similarity, takes a long time due
to a large number of steps. When the number of nodes is large,
GMN directly interacts with the large graph at the node level with
quadratic computation cost, which takes more time. Simultane-
ously, PSimGNN performs node interaction with the smaller graph,
thus shortening the time, which proves our previous analysis of
computation cost. At the same time, the experimental results of
PSimGNN-up, PSimGNN-k, and PSimGNN also indicate that the
more subgraphs involved in the computation, the longer it takes.
d here. There are no trimming steps for graphs in IMDB-X, so we
only these three well-known approximation algorithms to get
the ground truth GED.

In order to convert the calculated GED into the similarity score
required by our model, we first normalize the GED by
nGEDðG1;G2Þ ¼ GEDðG1 ;G2Þ

ðjG1 jþjG2 jÞ=2, where jGij represents the total number

of nodes in graph Gi. Then use the exponential function f ðxÞ ¼ e�x

to map the normalized GED to between 0 and 1 to represent the
pair’s graph similarity. Here we can see that the more similar the
graph, the smaller the GED, and the more similarity tends to 1.

4.3. Baseline methods

Our baseline includes three categories of methods, fast approx-
imate GED calculation algorithms, graph embedding based models,
and graph matching network-based models.

� The first category of baseline includes three classic algorithms
for GED calculation. (1) Hungarian [25,36] is a cubic-time algo-
rithms based on the Hungarian Algorithm for bipartite graph
matching. (2) VJ [12,18] is also a cubic-time algorithms based
on the algorithm of Volgenant and Jonker. (3) Beam search
(Beam) [31]. The equivalent variable of the A* algorithm is
sub-exponential time.

� The second category of baseline includes two graph embedding
based models, GCN-Mean and GCN-Max [11]. They all embed
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graphs into vectors using GCN and then use the similarities cal-
culated by these vectors as the similarities of these graph pairs.

� The third category of baseline includes three graph matching
network-based models. (1) SimGNN [2] and (2) GSimCNN [4]
combine the embedding of the whole graph and node-level
comparison. (3) GMN [27] uses the comparison node informa-
tion within and between graphs to calculate similarity.

Our method also belongs to the third category of methods,
using graph matching based networks to calculate the similarities
of graph pairs.
4.4. Parameter settings

For the architecture of our model, PSimGNN, we partition each
large graph into k (here k = 3) subgraphs. Among the nine subgraph
pairs, 0, 3, and 9 subgraph pairs with the highest similarity scores
are selected for node-level comparison, respectively. Here we call
them PSimGNN-up (only subgraph-level interactions are involved
in the computation), PSimGNN-k (k or three pairs of subgraphs
participate in the node-level comparison), and PSimGNN (all or
nine pairs of subgraphs participate in the node-level comparison).
It is worth mentioning that we do not perform graph partition for
graphs with very few nodes, such as the graphs in the AIDS and
LINUX datasets.

We set the number of GIN [43] layer to 3, and use Parametric
Rectified Linear Unit (PReLU) [14] as the activation function. For
the initial node representations, we adopt the constant encoding
scheme for BA-datasets since their nodes are unlabeled, as men-
tioned in Section 3.2.1. The dimensions of the 1st, 2nd, and 3rd
layer of GIN’s output are 64, 32, and 16, respectively. We use a fully
connected layer to reduce the similarity vectors’ dimension
obtained at the subgraph-level interaction from 9 to 8, and another
fully connected layer to change the dimension of the similarity
vector after the node-level comparison from 3 to 8. Finally, four
fully connected layers are used to reduce the dimension of the con-
catenated results from the subgraph-level interaction and the
node-level comparison module, from 16 to 8, 8 to 4, 4 to 2, and 2
to 1.

For training, we set the batch size to 128, use the Adam algo-
rithm [22] for optimization, and set the initial learning rate to
0.001. We set the number of training iterations to 2000 and choose
the best model based on the lowest validation loss.



Table 3
Results on BA-60 dataset ð10�2Þ.. The best results of the neural network-based
models, as well as the traditional methods that exceed these results are bolded.

Method MSE MAE q s p@10 p@20

hungarian 18.62 33.22 75.98 57.72 74.25 84.75
vj 25.87 39.48 3.29 2.29 35.00 50.50

beam 5.88 12.93 85.80 74.34 67.75 90.00

GCN-Mean 0.58 5.39 75.64 53.29 58.00 86.88
GCN-Max 1.37 9.14 74.61 52.30 54.50 86.62

SimGNN 0.78 6.58 77.30 56.78 71.00 88.87
GSimCNN 0.60 5.61 80.78 60.47 67.75 90.50

GMN 0.27 3.82 76.36 54.67 60.00 89.00
PSimGNN-up 0.44 4.80 78.92 57.63 59.50 88.37
PSimGNN-k 0.32 4.07 80.43 60.31 70.50 88.00
PSimGNN 0.20 3.39 84.49 66.15 78.50 91.87

Table 4
Results on BA-100 dataset ð10�2Þ.

Method MSE MAE q s p@10 p@20

hungarian 20.54 34.38 81.10 60.36 61.00 99.00
vj 27.39 40.46 58.37 41.56 46.25 82.62

beam 11.40 20.68 78.67 62.83 62.75 90.00

GCN-Mean 1.25 9.09 76.39 53.38 56.50 100
GCN-Max 1.20 8.54 76.17 53.04 52.50 99.88

SimGNN 0.80 6.93 76.37 53.83 58.00 100.00
GSimCNN 0.23 3.25 82.33 61.69 67.00 100.00

GMN 0.15 2.71 77.22 54.50 53.25 100.00
PSimGNN-up 0.50 4.24 77.71 55.33 53.50 100.00
PSimGNN-k 0.12 2.51 79.65 57.81 57.75 100.00
PSimGNN 0.11 2.41 80.14 58.44 61.25 100.00

Table 5
Results on BA-200 dataset ð10�2Þ.

Method MSE MAE q s p@10 p@20

hungarian 25.91 37.94 79.38 58.10 64.25 94.00
vj 31.44 42.68 61.91 43.10 48.50 80.38

beam 18.60 28.79 77.24 65.21 56.00 83.50

GCN-Mean 2.37 12.78 73.47 49.46 50.00 95.00
GCN-Max 2.28 10.76 74.99 51.69 53.75 94.25

SimGNN 0.84 6.19 73.47 48.89 52.75 95.13
GSimCNN 0.32 3.58 79.68 56.82 59.00 95.00

GMN 0.12 2.66 79.58 57.87 60.25 95.00
PSimGNN-up 0.08 4.53 74.95 51.58 46.75 95.13
PSimGNN-k 0.07 2.14 76.36 53.29 52.50 96.00
PSimGNN 0.06 1.96 79.16 57.24 55.75 97.63
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4.5. Evaluation metrics

We used two metrics to evaluate the similarity computation
results of this model. Mean Squared Error (MSE). MSE measures
the average squared difference between all the calculated similar-
ities and the ground-truth similarities. Mean Absolute Error (MAE).
MAE measure the averaged value of the absolute deviation of all
the calculated similarities from the ground-truth similarities.

For the ranking results, we also use Spearman’s Rank Correlation
Coefficient (q) [38] and Kendall’s Rank Correlation Coefficient (s) [21]
to evaluate how well the predicted ranking results match the true
ranking results. Precision at k ðp@kÞ is computed by taking the
intersection of the predicted top k results and the ground truth
top k results divided by k. Compared with p@k;q and s can better
reflect the global ranking results instead of focusing on the top k
results.

4.6. Results and analysis

The experimental results on these datasets can be found in
Tables 2–6. Table 2 shows that on small graphs where the local fea-
tures are not obvious enough, PSimGNN can show comparable per-
formance to other matching models. This proves that the
framework is suitable for small graphs, with great scalability. The
ranking results of VJ on the BA-60 dataset is extremely poor, and
these three traditional methods also have very high MSE and
MAE. These results show the limitations of traditional methods
for graphs with a large number of nodes. However, as far as the
index s is concerned, the optimal value of beam continues to
exceed the neural network methods. This may be due to the way
that beam directly acts on edges and nodes in the BA graph can bet-
ter distinguish the distance between query graphs and graphs in
the database, thus having advantages in the ranking. As for the
BA-100 dataset, p@20 is 100%. This is because when randomly
dividing the test dataset of 40 graphs, there are exactly 20 graphs
from the basic graph 1, and the other 20 graphs are from the basic
graph 2. Being able to distinguish these graphs correctly also
proves the excellent performance of the neural network-based
models.

For all datasets, the GCN-Mean and GCN-Max results are worse
than any matching model in terms of most evaluation indicators.
When the number of nodes per graph increases, the limitation of
using one vector to characterize the entire graph is more obvious,
and the results are worse, which also confirms our previous analy-
sis in Section 3.2.

PSimGNN-up only uses the subgraph-level embeddings and
achieves the same level of evaluation results as other matching
models, which proves the effectiveness of introducing subgraphs
to help the large graphs similarity computation. PSimGNN-k,
which uses k subgraph pairs for node-level comparison, achieves
better results than PSimGNN-up on all evaluation metrics. Our
Table 2
Results on three common datasets ð10�2Þ. The best results are bolded.

Method AIDS
mse s p@10 mse

hungarian 2.53 37.80 36.00 2.98
vj 2.92 38.30 31.00 6.39

beam 1.21 46.30 48.10 0.93

GCN-Mean 0.34 50.10 18.60 0.85
GCN-Max 0.37 48.00 19.50 0.64

SimGNN 0.12 69.00 42.10 0.15
GSimCNN 0.08 72.40 52.10 0.10

GMN 0.07 73.20 52.30 0.08
PSimGNN 0.11 70.10 53.40 0.12
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model, PSimGNN, consistently achieves the best or second-best
under most evaluation metrics across the three datasets within
the neural network-based methods. In some ranking indicators
lINUX IMDB
s p@10 mse s p@10

51.70 91.30 0.18 87.20 82.50
45.00 28.70 0.18 87.40 81.50
71.40 97.30 0.24 83.70 80.30

42.40 14.10 0.69 30.70 20.00
49.50 43.70 0.51 34.20 42.50

83.00 94.20 0.13 77.00 75.90
96.20 99.20 0.08 84.70 82.80
95.70 96.80 0.08 81.80 82.30
91.50 97.70 0.07 82.20 83.10



Table 6
Results on IMDB-X dataset ð10�2Þ.

Method MSE MAE q s p@10 p@20

hungarian 0.27 1.66 93.09 83.18 74.09 80.91
vj 0.77 2.27 93.32 83.34 74.50 81.48

beam 0.04 0.49 96.01 90.40 90.91 90.68

GCN-Mean 2.22 5.54 46.64 36.20 48.64 70.22
GCN-Max 4.71 12.32 24.62 17.36 39.09 44.55

SimGNN 0.74 3.37 52.70 39.35 55.68 61.47
GSimCNN 0.50 3.04 66.26 49.87 62.05 64.09

GMN 0.38 2.73 69.59 55.38 65.68 71.82
PSimGNN-up 0.82 4.41 53.74 42.38 59.00 61.70
PSimGNN-k 0.42 3.01 68.23 51.42 62.50 64.43
PSimGNN 0.31 2.51 72.34 60.31 68.18 73.86

Table 7
Results for average time consumption on one pair of graphs in milliseconds.

Method BA-60 BA-100 BA-200

hungarian 229 331 1192
vj 221 308 1010

beam 177 254 737

GCN-Mean 6.4 8.7 10.2
GCN-Max 7.1 9.2 11.3

SimGNN 4.4 5.6 6.9
GSimCNN 2.5 3.1 5.6

GMN 9.4 13.8 37.5
PSimGNN-up 3.8 5.0 9.4
PSimGNN-k 8.1 10.6 15.6
PSimGNN 15.6 20.0 30.0
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(q; s, and p@10) of BA-100 and BA-200, although PSimGNN is not
optimal, which may be caused by the randomness of graph parti-
tioning, it still gets close to GSimCNN and GMN in performance.
This implies that our model introduces a more flexible framework
and performs the same level of accuracy as other neural network-
based models. And as the number of subgraph pairs using node-
level comparison increases, the model contains more information.
The corresponding evaluation results become better, which is also
in line with our expectations. As mentioned before, for graphs in
IMDB-X, there is no trimming steps. The Beam algorithm’s accu-
Table 8
Ablation Study on BA-60 dataset ð10�2Þ.. The best results are bolded.

Method MSE MAE q s p@10 p@20

PSimGNN_sub_att 0.31 3.91 83.17 62.50 72.75 90.37
PSimGNN_cross_att 0.29 3.88 82.29 61.30 73.50 90.87
PSimGNN_cross 0.61 5.72 79.83 57.82 71.50 89.37
PSimGNN_within 0.57 5.57 80.92 58.36 69.50 90.00

PSimGNN 0.20 3.39 84.49 66.15 78.50 91.87

Fig. 8. Mean squared error with respect to the partition numb
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racy is higher than the other two, so most of the ground truth is
the approximate GEDs calculated by Beam. In this case, Beam
shows the best performance in the Table 6, which also meets our
expectations. At the same time, PSimGNN also shows the best per-
formance compared with other deep learning methods on the
IMDB dataset, which proves that the idea of graph partitioning is
effective in the task of graph similarity computation.

As shown in Table 7, we recorded the running time for different
models on test datasets. It is worth noting here that these models
are implemented in different ways, and the framework itself may
cause the time issue. In this case, it isn’t easy to judge the compu-
tation cost directly by the running time is consumed. For example,
GCN-Mean and GCN-Max, although their computation cost is OðNÞ,
to get the best performance, there are several layers of node
embedding, so the time consumed is not the lowest. And
GSimCNN, with OðN2Þ computation cost, has the fastest running
time due to the optimization of CNN in the framework used.

However, since we used the GMN code for reference when
implementing node-level interaction in PSimGNN, the two still
have a comparative value. By observing the running time of these
two methods on three datasets of different scales, we can find that
when the number of graph nodes is small, PSimGNN, which parti-
tions first and then calculates the similarity, takes a long time due
to a large number of steps. When the number of nodes is large,
GMN directly interacts with the large graph at the node level with
quadratic computation cost, which takes more time. Simultane-
ously, PSimGNN performs node interaction with the smaller graph,
thus shortening the time, which proves our previous analysis of
computation cost. At the same time, the experimental results of
PSimGNN-up, PSimGNN-k, and PSimGNN also indicate that the
more subgraphs involved in the computation, the longer it takes.
4.7. Ablation study

We evaluated how each of the components of PSimGNN affects
the results. We report the results on the BA-60 dataset after
removing a specific part. PSimGNN_sub_att represents our model
without the attention mechanism in subgraph embedding. Here
we use the average pooling method as an alternative. PSimGNN_-
cross_att indicates our model without the attention mechanism
in node-level comparison. We also give each node the same
weight. PSimGNN_cross and PSimGNN_within, respectively, means
that our model removes the interaction within the subgraph and
between subgraphs. PSimGNN is the complete model we proposed.
It can be seen from Table 8 that regardless of removing each com-
ponent, the performance of PSimGNN shows attenuation, and
removing the attention mechanism has less impact on perfor-
mance than the other two. This makes intuitive sense. Because
for the latter two cases, they will lose a lot of information within
or between graphs, which is not conducive to the high-quality
er k and the dimensions D of subgraph-level embeddings.
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embedding. This also further proves that the aggregation methods
and attention mechanism are effective. With their joint contribu-
tion, PSimGNN can perform well in the graph similarity computa-
tion task.

4.8. Parameter sensitivity

In this part, we analyze the effect of partition number k and
subgraph embedding dimension D on the performance of
PSimGNN. We report the mean squared error on the BA-60 dataset.
The lower the mse, the better the performance. Fig. 8(a) shows the
performance comparison of the partition number k. As the number
of partition subgraphs increases, the performance will first rise and
then decline. This is because too few subgraphs cannot make full
use of the graph’s local features, and too many subgraphs will
destroy the overall structure of the graph. Therefore, we need to
choose a reasonable number of subgraphs to achieve optimal per-
formance. Fig. 8(b) presents the performance comparison of the
subgraph embedding dimension. In general, with the increase of
the embedding dimension, the performance will increase. It makes
intuitive sense since larger subgraph embedding dimension D can
provide PSimGNNmore capacity to represent subgraphs. However,
when D reaches a certain level, around 32 here, performance
growth becomes slow. Therefore, we need to find a proper length
of embedding to balance the trade-off between the performance
and the complexity.
5. Conclusion and future directions

We are at the intersection of graph neural network, graph sim-
ilarity computation, and graph partition. We are taking the first
step towards large graph similarity computation via graph parti-
tion and a novel neural network-based approach PSimGNN. The
proposed method’s central idea is to solve the problem of large
graph similarity computation from the perspective of subgraphs,
which takes any two graphs as input and outputs their similarity
score. The experimental results show that PSimGNN achieves com-
petitive accuracy and computation cost by introducing graph
partitioning.

There are several directions to go for future work: (1) State-of-
the-art graph partitioning methods usually consist of three main
phases: coarsening, initial partitioning, and uncoarsening. It’s very
interesting to explore whether we can only deploy the coarsening
stage on large graphs and split each large graph into some soft
clusters (partitioning results is hard clusters). Then similarity com-
putation based on these soft clusters may further reduce computa-
tional computation cost involved in the node–node similarity
computation. (2) Introducing a mechanism to deal with edge attri-
butes [46] is promising in some applications. In chemistry, atomic
properties and bonds of a chemical compound are usually labeled,
so it is useful to incorporate edge labels into our model. (3) Given
the constraint that the exact GEDs for large graphs cannot be com-
puted, we can only use approximate GEDs. When the number of
graph nodes is further larger, the approximation algorithms
become even less accurate. It would be interesting to see how
the learned model generalizes to larger graphs trained only on
the exact GEDs between partitioned subgraphs or other small
graph datasets.
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