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Abstract

Different genes form complex networks within cells to carry out critical cellular functions,

while network alterations in this process can potentially introduce downstream transcrip-

tome perturbations and phenotypic variations. Therefore, developing efficient and interpret-

able methods to quantify network changes and pinpoint driver genes across conditions is

crucial. We propose a hierarchical graph representation learning method, called iHerd.

Given a set of networks, iHerd first hierarchically generates a series of coarsened sub-

graphs in a data-driven manner, representing network modules at different resolutions (e.g.,

the level of signaling pathways). Then, it sequentially learns low-dimensional node repre-

sentations at all hierarchical levels via efficient graph embedding. Lastly, iHerd projects sep-

arate gene embeddings onto the same latent space in its graph alignment module to

calculate a rewiring index for driver gene prioritization. To demonstrate its effectiveness, we

applied iHerd on a tumor-to-normal GRN rewiring analysis and cell-type-specific GCN anal-

ysis using single-cell multiome data of the brain. We showed that iHerd can effectively pin-

point novel and well-known risk genes in different diseases. Distinct from existing models,

iHerd’s graph coarsening for hierarchical learning allows us to successfully classify network

driver genes into early and late divergent genes (EDGs and LDGs), emphasizing genes with

extensive network changes across and within signaling pathway levels. This unique

approach for driver gene classification can provide us with deeper molecular insights. The

code is freely available at https://github.com/aicb-ZhangLabs/iHerd. All other relevant data

are within the manuscript and supporting information files.
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Author summary

In our study, we developed a new method called iHerd to better understand how genes

work together within cells and how changes in these interactions can lead to various dis-

eases. Our approach allows us to analyze complex gene networks and identify key genes

responsible for network changes across different conditions. We applied iHerd to various

data sets and found that it could effectively pinpoint genes linked to different diseases.

Our method also helps classify these genes based on the extent of network changes they

cause, providing deeper insights into the molecular mechanisms involved. Our research

aims to improve our understanding of gene interactions and their role in disease develop-

ment, ultimately contributing to the discovery of new therapeutic targets. The code is

freely available for researchers to use and build upon in their work.

Introduction

In biology, cells maintain highly coordinated gene expression patterns via precise spatiotem-

poral control to dictate essential molecular functions [1]. Numerous studies have reported that

alterations in this dynamically controlled process (e.g., changes in gene regulation or gene co-

expression relationships) can lead to expression-level perturbations, phenotypical changes,

and a wide range of diseases [2]. Therefore, an important goal in systems biology has been to

model such regulatory relationships and gene interactions as gene regulatory networks

(GRNs) and gene co-expression networks (GCNs), respectively, using network representation

analysis [3].

Recent advances in novel functional genomics and transcriptomic profiling assays have

enabled direct analysis of gene regulation and interactions on a genome-wide scale, allowing

us to construct high-confidence GRNs and GCNs across various biological conditions [4].

Moreover, the single-cell revolution, especially single-cell multi-omics sequencing, has

expanded our understanding of such biological networks to the finest possible resolution–indi-

vidual cells–providing an unprecedented opportunity to model and interpret network hetero-

geneity and dynamics in targeted cell types [5]. Lastly, transparent data-sharing initiatives

from the scientific community have further provided scientists with direct access to popula-

tion-scale functional genomic and single-cell sequencing data across diverse conditions [6].

Combined, these advances enable unprecedented opportunities for scientists to investigate

transcription network dynamics and highlight novel risk genes for preventive medicine and

drug development.

However, it remains computationally challenging to model network changes, i.e., rewiring

events, for three reasons [7]. First, GRNs and GCNs are usually sparse and noisy, especially

those inferred from single-cell omics data [8]. As a result, direct edge gain and loss counting

methods are unable to precisely model and quantify network rewiring events. Second, multiple

genes work together to carry out certain molecular functions (e.g., genes in the same signaling

pathway), leaving them highly correlated and violating the independent and identically distrib-

uted assumptions [9]. Several models have been proposed to address such dependency using

Latent Dirichlet Allocation [10]. While promising, those models still lack the ability to quantify

network rewiring status within and across a particular pathway. Lastly, the availability of

extensive genomics data provides rich features for genes, such as epigenetic status and muta-

tion signatures [11]. Unfortunately, existing methods usually ignore node features in their net-

work modeling and cannot provide hierarchical information [12]. Novel models are urgently
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needed to efficiently incorporate additional node features and offer gene pathway information

in a hierarchical manner to facilitate accurate risk gene prioritization in disease studies.

To tackle these problems, we present a novel computational method, iHerd, to efficiently

quantify network rewiring status across different biological conditions. As shown in Fig 1,

given a set of networks (e.g., GRNs and GCNs), iHerd first hierarchically generates a series of

coarsened sub-graphs in a data-driven manner, representing gene communities at different res-

olutions to mimic signaling pathways. Then, it sequentially learns low-dimensional node repre-

sentations at all hierarchical levels via efficient graph embedding. Lastly, iHerd includes a graph

alignment module by projecting separate gene embeddings onto the same latent space to calcu-

late a rewiring index for each gene at each hierarchical sub-graph level. This process makes it

possible to measure network alterations and highlight genes with extensive network changes

with direct interpretations. Distinct from existing methods, iHerd can directly extract complex

gene dependencies from the observed networks and incorporate rich node features (e.g., tran-

scriptomic, and epigenetic profiles) to jointly quantify network changes across conditions.

To demonstrate its effectiveness, we applied iHerd on a tumor-to-normal GRN rewiring

analysis and cell-type-specific GCN analysis using single-cell multiome data in post-mortem

brains. We showed that iHerd can effectively pinpoint novel and well-known risk genes in dif-

ferent disease models. Besides, iHerd’s graph coarsening scheme for hierarchical learning

allows us to successfully classify network driver genes into early and late divergent genes

(EDGs and LDGs), representing genes with extensive network changes across and within sig-

naling pathway levels. This unique approach for driver gene classification provides us with

deeper molecular insights. We further validated the EDGs and LDGs via an independent tran-

scriptomic analysis, demonstrating the power of our method.

In summary, iHerd can robustly capture rich and concise network topological information at

multiple levels, hierarchically quantify network changes, and pinpoint network rewiring driver

genes with molecular interpretations. We have implemented iHerd as a free software package

available for the community to quantify network changes and prioritize risk genes in disease.

With the explosion of available population-scale functional genomic and single-cell sequencing

data across diverse conditions, we believe that iHerd will be a powerful tool for future studies.

Fig 1. The overall framework of iHerd. It is an end-to-end learning framework, which contains a Graph Coarsen module, Graph Representation Learning

module, Embedding Refinement module and Hierarchical Embedding Alignment module. The detail of each component is introduced in the Method Section.

https://doi.org/10.1371/journal.pcbi.1011444.g001
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Results

iHerd recovers key tumor-to-normal regulatory hierarchy changes by

integrating large-scale ChIP-seq data

Transcription is synergistically regulated via cooperative interactions of different transcription

factors (TFs). Lines of evidence indicate that the TF-TF regulatory network, a specific kind of

GRN, naturally forms a hierarchy with a proclivity for downward information flow [13]. To

some degree, scientists have argued that hierarchy, rather than connectivity, better reflects the

importance of regulators, and perturbations of such hierarchical relationships can lead to a

cascade of gene expression-level perturbations, causing a wide range of diseases. Therefore, we

first used iHerd to analyze TF-TF GRN alterations in the process of oncogenesis.

Similar to previous work [10], we selected two widely used tier-1 ENCODE cell types K562

and GM12878 to roughly represent similar tumor-to-normal comparisons. Specifically, we

compiled a shared TF-to-TF GRN by pruning the official ENCODE TF network constructed

from ChIP-seq data (details in Method Section). As a result, we used two normal and tumor

TF-to-TF GRNs as input for iHerd, both with 86 edges from 40 common TFs.

To better capture the TF hierarchy information, we specifically designed iHerd’s graph

embedding method to mainly capture the topological identity information (see details in

Methods Section). During the training, we first separately fitted our model on K562 and

GM12878 TF-to-TF GRNs to obtain a latent representation for each TF. As shown in Fig 2A–

2D, iHerd organized the 40 TFs into three distinct clusters with noticeable differences in their

in/out degree ratios (0.57, 0.92, and 3.18 for K562). This pattern was highly consistent within

the two cell types (0.14, 0.91, and 1.78 for GM12878). According to the in/out degree ratios, we

analogized these three TF groups as commanders (in < out), messengers (in� out), and sol-

diers (in> out) (Fig 2A–2D). Our findings are highly consistent with previous reports of net-

work hierarchies in similar cell types.

Next, we aimed to quantify TF-to-TF GRN rewiring and highlight key TFs that change net-

work hierarchies in the normal-to-tumor transition. Several methods have been developed for

such analyses, such as the hierarchical score maximization [13], breadth-first-search [14], and

vertex sort [15] algorithms. However, with only fixed and discrete TF hierarchy assignments,

these methods fail to provide quantitative measures with sufficient resolution for precisely

measuring GRN topological changes for each TF across conditions. In contrast, iHerd takes a

different approach by aligning two graph embeddings onto the same latent space, where TFs

are organized into distinct clusters by their topological roles (Fig 2F) rather than by their cell

types (Fig 2E). Then, we can naturally calculate the normalized L2 distance (dnorml2 ) of the TF

embeddings in the aligned latent space as the TF rewiring score. As a validation, we separated

TFs into hierarchy-changing and hierarchy-preserving groups (purple and gray dots in

Fig 2F) and compared their dnorml2 values in tumor and normal cells. As expected, hierarchy-

changing TFs showed significantly higher dnorml2 values in the K562-GM12878 comparisons

(0.78. vs. 0.42, P value 4E-4), validating the feasibility of our iHerd algorithm.

Lastly, we selected the top TFs with the largest dnorml2 in the tumor-to-normal GRNs and

directly visualized their topological role changes in the uniform manifold approximation and

projection (UMAP; enlarged points, Fig 2H–2J). For instance, BCLAF1 demonstrated the larg-

est dnorml2 in the normal-to-tumor transition by jumping from the soldier group in GM12878 to

the commander group in K562. Interestingly, this finding is consistent with BCLAF1’s well-

known role as a death-promoting TF with significantly upregulated gene expression in many

cancer types [16]. Similarly, TATA-binding protein is upregulated by oncogenic signaling path-

ways and is suggested to be a critical component in the dysregulated signaling that occurs

downstream of tumor-causing genetic lesions [17]. This TF also had a role change from the
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soldier group in GM12878 to the commander group in K562, as shown in Fig 2I. In addition,

iHerd highlighted GABPA, a TF selectively recruited to the mutant form of the TERT pro-

moter to activate TERT’s transcription in most human cancers [18]. All these TFs show hierar-

chical changes from normal to disease states and have known roles in cancer, indicating that

iHerd can faithfully recover the changes of GRNs and quantify such network rewiring events

across conditions with good interpretability.

iHerd outperforms four baseline methods in the TF prioritization task

a) Simulation experiment settings. Due to the lack of ground truth, we manipulated the

GM12878 & K562 GRNs, as shown in Fig 3A. For node i in the GM12878 GRN (Gg0 ), we sim-

ulated a new GRN (Ggi
s ) by randomly deleting its existing edges (e.g., BCLAF1-to-BHLHE40

Fig 2. iHerd recovers the hierarchy change within the transcript factor (TF) GRNs. (a) The UMAP of embeddings for TFs in GM12878. (b) The boxplot of

three clusters in GM12878 for the ratio of in degree and out degree. (c) The UMAP of embeddings for TFs in K562. (d) The boxplot of three clusters in K562

for the ratio of in degree and out degree. (e) The UMAP of embeddings for TF2 in GM12878 and K562 without the embedding alignment. (f) The UMAP of

embeddings for TF2 in GM12878 and K562 after the embedding alignment. (g) The line plot of the sorted normalized L2 distance. The purple dot indicates

there is a switching event for this TF. The boxplot of normalized l2 distance between non-switching TFs and switching TFs also demonstrates that the TF with a

higher l2 distance has more chance to switch its cluster from GM12878 to K562. (h-j) The UMAPs of three TF examples switch their cluster from GM12878 to

K562.

https://doi.org/10.1371/journal.pcbi.1011444.g002
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and BCLAF1-to-GABPA, Fig 3A) and adding new edges from edges (BCLAF1-to-CHD2 and

BCLAF1-to-FOS, Fig 3A) in the K562 GRN (Gk0 ). We will not modify any edges in node i’s

non-connecting nodes. Therefore, when comparing Gg0 to Ggi
s , the distance for node i (di)

should be larger than any dj, j 6¼ i because there are almost no changes for node j. Similarly, we

repeated this process for every TF in Gk0 . Note that one simulation would be discarded if this

process gave rise to isolated nodes, or there is no difference in the two GRNs. In the end, we

have 44 simulated network pairs.

b) Baseline methods. We benchmarked with four baseline methods (Table 1 below).

• Node Degree Change. This baseline method ranks nodes by degree change in two directed

GRNs. Degree change (ΔD) is the absolute sum of in-degree (din) and out-degree (dout)

Fig 3. Simulated GRN experiments. (a) Simulation scheme on GRNs. (b) The violin plot of the false positive test. (c) The distributions of the node change

distance for the false positive test.

https://doi.org/10.1371/journal.pcbi.1011444.g003

Table 1. Summary of baseline methods.

Baseline Methods Property Limitations

Node Degree Change Linear Fails when in/out degrees remain constant despite edge changes

Clustering Coefficient

Change

Non-

linear

Fails when clustering coefficient remains constant despite edge changes

PageRank Change Non-

linear

Struggles to identify real node changes due to global scope.

Contrastive Learning Non-

linear

Fails to detect changes when node’s cluster membership remains the

same.

https://doi.org/10.1371/journal.pcbi.1011444.t001
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changes. Given two graphs G1 and G2, each with N nodes,

DD ¼ jdinðG1Þ � dinðG2Þj þ jdoutðG1Þ � doutðG2Þj.

• Clustering Coefficient Change. The clustering coefficient, Cv, for a node v with kv neigh-

bors, reflects neighbor closeness. It’s computed as Cv ¼
2ev

kvðkv � 1Þ
, where ev is the number of

edges between the kv neighbors. The absolute difference in clustering coefficients between

the same nodes in two GRNs G1 and G2 is calculated as ΔC = |C(G1)−C(G2)|. Significant

changes imply network connection changes.

• PageRank Change. The PageRank (PR) of a node v is given by

PR vð Þ ¼ 1� d
N þ d∗Sðv;uÞ2E

PRðuÞ
LðuÞ

� �
, where d is a damping factor (typically 0.85), N is the total

number of nodes in the network, E is the set of edges in the network, L(u) is the number of

outgoing links for a node u. After random initialization, PageRank values iteratively update

until convergence. PageRank change between two GRNs G1 and G2, each with N nodes, is

calculated as ΔPR = |PR(G1)−PR(G2)|.

• Contrastive Learning. This method applies the Louvain algorithm for initial clustering and

optimizes node embeddings (E2RN×d, N: the number of nodes, d: embedding dimension) by

adjusting inter/intra-cluster distances. The distances between node embeddings from two

GRNs G1 and G2 are calculated as ΔE = k(G1)−E(G2)k2, where k*k2 represents the L-2 norm.

Larger distances indicate significant connection changes.

c) Benchmarking results. We use the R@n (the chance that the modified TF was found

within the top n predicted TFs) for benchmarking. Specifically, Let xi be the changed node and

Pi,n denotes the top n nodes predictions according to node distances, we can define Ci as a

binary indicator function, where Ci = 1, if xi is in Pi,n else 0. Then, R@n is defined as follows:

R@n ¼ 1

jSj

PjSj
i Ci, where |S| is the total network pairs. As shown in Table 2, we found that

iHerd consistently outperforms all other methods across all different levels of recall.

d) False positive rate analysis. As suggested, we conducted a false positive rate analysis

and examined two scenarios as shown in Table 3.

• First, we calculated the average node distance (Δdf, foreground) by comparing different

GRNs (Gg0 &Ggi
s , see “1.1. Simulation Experiment Settings” for details).

• Second, we calculated the average node distance (Δdb, background) by comparing identical

GRNs (Ggi
s &Ggi

s ).

Both scenarios were tested across 44 modified versions of Ggi
s . As shown in Fig 3B and 3C,

Δdf was significantly larger than Δdb (0.21 vs. 0.03, P = 1e-22 for two-sided t-test, demonstrat-

ing iHerd’s robustness.

Table 2. TF prioritization benchmarking.

Methods R@1 R@2 R@3 R@4 R@5

Node Degree 0.068 0.091 0.114 0.159 0.182

Clustering Coefficient 0.045 0.136 0.205 0.341 0.432

PageRank 0.205 0.295 0.364 0.409 0.432

Contrastive Learning 0.008 0.030 0.068 0.083 0.121

iHerd 0.250 0.318 0.364 0.432 0.545

https://doi.org/10.1371/journal.pcbi.1011444.t002
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iHerd identifies early and late divergent genes across different cell types

from single-cell RNA-sequencing data in post-mortem brains

Within a cell, a group of molecules works together via a cascade of biochemical reactions to

control critical cellular functions, such as cell division or cell death ([19]). Alterations in such

collaborative activities (i.e., “co-expression changes” in GCNs) can potentially introduce

Table 3. False Positive Rate Analysis.

Two Scenarios Input GRNs Average Node Distance

Different Networks Gg0 &Ggi
s Δdf

Same Networks Ggi
s &Ggi

s Δdb

https://doi.org/10.1371/journal.pcbi.1011444.t003

Fig 4. iHerd identifies different divergent genes between cell types. (a) Different neuronal and non-neuronal groups in UMAP using RNA. Here are seven

samples and 84,852 cells. (b) The dot plot colored by gene expression for different cell types. These genes are differentially expressed across seven cell types. (c)

The illustration of the discovery of different divergent genes. The L2 distance between g2 and g’2 is lower than the threshold at the early stage but exceeds the

threshold at the late stage. While the L2 distance between g1 and g’1 exceeds the threshold for all stages. (d) The boxplot of normalized abstract correlation

changes from excitatory neurons to macroglia between the top rewiring genes and the top conserved genes. Here we select 5% of genes with the largest L2

distance as the top rewiring genes and 5% of genes with the smallest l2 distance as the most conserved genes. The normalized L2 distance at different stages for

EDG. We select one example EDG: PPARG, and its violin plot of gene expression indicates that PPARG is highly expressed in neurons. (f) The normalized L2

distance at different stages for LDG. We select one example LDG: RUNX2, and its violin plot of gene expression indicates that RUNX2 is highly expressed in

microglia. "Middle" in iHerd refers to the first coarsening stage of the original network. With "Early", "Middle", and "Late" representing the coarsest, semi-

coarse, and original networks, we can have deeper insights into gene behavior in different biological contexts.

https://doi.org/10.1371/journal.pcbi.1011444.g004
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downstream transcriptome perturbations, phenotypic variations, and cell fate decisions [20].

Therefore, we next applied iHerd on cell-type-specific GCNs derived from single-cell data to

investigate gene co-expression changes across different biological conditions.

To construct high-confidence GCNs, we generated single-cell-multiome data from seven

post-mortem brain samples. After uniform pre-processing and strict quality control, 84,852

cells were kept and clustered into seven major cell types using canonical marker genes

(Fig 4A, details in Methods Section; dot plot of marker genes is shown in Fig 4B). To over-

come the sparsity of the single-cell sequencing data, we built the meta cells within each cluster

and ran WGCNA [21] to construct high-confidence GCNs in a cell-type-specific manner.

First, we focused on the three normal control samples to investigate GCN changes across

major brain cell types. Specifically, we kept 435 common highly variable genes in both excit-

atory neurons and microglia and constructed cell-type-specific GCNs as input for iHerd. We

enabled a graph coarsening process in our model for two purposes: 1) to distinguish gene

interaction pattern changes within and across pathways; 2) to accelerate the training process

on large graphs. As shown in Fig 4C, iHerd hierarchically learned node (gene) embeddings at

each sub-graph level and then aligned these embeddings from different cell types to the same

latent space. The dnorml2 from each level can be calculated accordingly, with the coarsest graph

(early stage, light blue in Fig 4C) representing different pathway information and the full

graph (late stage, dark blue in Fig 4C) capturing local community information. Then, we clas-

sified rewiring driver genes into EDGs and LDGs according to the dnorml2 patterns in each graph

level. Specifically, EDGs are defined as genes with consistently high dnorml2 values across all

graph levels, while LDGs are those with small dnorml2 values at coarse graph levels (light blue,

Fig 4C) and high dnorml2 levels at dense graph levels (dark blue, Fig 4C).

Then, we selected 21 genes with the top 5% L2 distance between excitatory neurons and

microglia at any graph level as candidate genes driving GCN changes across cell types. To vali-

date these genes, we compared the sum of the correlation changes (∑Δ|ρ|) of our prioritized

Fig 5. iHerd highlights extensive cell-type-specific divergent genes in brain disorders. (a-c) The analysis of excitatory neurons from control to MDD. (a)

The UMAP of one example of an early divergent gene: ENPEP and the normalized L2 distance among different stages for EDG. (b) The UMAP of one example

of a late divergent gene: INPP5D and the normalized L2 distance among different stages for LDG. (c) The normalized correlation changes for the top rewiring

gene and the top conserved gene. The top rewiring gene “ENPEP” shows larger correlation changes with other genes while the top conserved gene “ZNF804A”

almost has no correlation changes with other genes. (d-f) The analysis of excitatory neurons from control to PTSD. (d) The UMAP of one example of an early

divergent gene: TGFBR3 and the normalized L2 distance among different stages for ED(e) The UMAP of one example of a late divergent gene: ADARB2 and

the normalized L2 distance among different stages for LDG. (f) The normalized correlation changes for the top rewiring gene and the top conserved gene. The

top wiring gene “TGFBR3” shows larger correlation changes with other genes while the top conserved gene “SLC26A4-AS1” almost has no correlation changes

with other genes.

https://doi.org/10.1371/journal.pcbi.1011444.g005

PLOS COMPUTATIONAL BIOLOGY Hierarchical Graph Learning for Disease Genes Prioritization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011444 September 11, 2023 9 / 20

https://doi.org/10.1371/journal.pcbi.1011444.g005
https://doi.org/10.1371/journal.pcbi.1011444


group with control genes (bottom L2 distance). Consistent with our predictions, the top rewir-

ing genes showed larger correlation changes as compared to the bottom rewiring genes (0.72

vs. 0.26, P value 8E-4, Fig 4D), validating our prioritization scheme.

To further investigate EDGs and LDGs, we plotted an example of EDG and LDG in the

UMAP for direct comparison (PPARG in Fig 4E and RUNX2 in Fig 4F, respectively). Specifi-

cally, our highlighted EDG PPARG is a neuron-specific gene with low expression in microglia

[22]. We found that PPARG showed large dnorml2 values from the coarsest graph to the full

graph, as reflected by its consistently high rewiring scores. The hierarchical analysis indicated

that PPARG jumped out of its original gene communities (e.g., pathways) with noticeable co-

expression pattern changes. On the contrary, our highlighted LDG, RUNX2, is highly

expressed in microglia but slightly downregulated in excitatory neurons [23]. RUNX2 has an

increasing pattern of dnorml2 values, with more significant dnorml2 values in refined, dense graphs,

implying that it mainly changes co-expression relationships locally within the same gene com-

munity (e.g., pathways) without dramatic changes across different communities.

iHerd highlights cell-type-specific risk genes in brain disorders

Lastly, we further explored GCN changes across different conditions to identify cell-type-spe-

cific risk genes for major depressive disorder (MDD) and post-traumatic stress disorder

(PTSD) (Fig 5). We first performed a linkage disequilibrium score regression (LDSC) analysis

on the single-cell ATAC-sequencing modality peaks for genome-wide association study

Fig 6. Simulated GCN experiments. (a) Simulation scheme on GCNs. (b) The violin plot of the false positive test. (c) The distributions of the node change

distance for the false positive test.

https://doi.org/10.1371/journal.pcbi.1011444.g006
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summary statistics to highlight the most relevant cell types. Consistent with previous results,

excitatory neurons showed the highest LDSC scores, indicating a strong disease association.

Therefore, we focused on excitatory neurons to pinpoint disease driver genes.

iHerd prioritized four genes in excitatory neurons: ENPEP and INPP5D for MDD and

TGFBR3 and ADARB2 for PTSD (Fig 5). ENPEP was the highest-ranked EDG with consistently

high dnorml2 scores at all graph levels (Fig 5A). Reports [24] indicate that ENPEP is associated with

an inflammatory or immune response in MDD patients. ENPEP is involved in the negative regu-

lation of transcription and nucleic acid metabolism, which contributes to MDD. We performed

differential gene expression analysis on matched single-cell RNA-sequencing data and found that

ENPEP is downregulated in excitatory neurons of MDD samples (0.662 log-fold change, P value

4.01E-44). Similarly, reports suggest that INPP5D is part of a significant KEGG pathway for phos-

phatidylinositol signaling in MDD [25]. iHerd highlighted INPP5D as the most significantly

rewired LDG with extensive GCN rewiring within the same gene community (Fig 5B). Similarly

in the PTSD-control comparison, the top EDG is TGFBR3 (Fig 5D), which has been identified as

a significantly modulated gene in stressful life event exposures [26]. Finally, researchers have

demonstrated that ADARB2 inhibits the activity of the other members of this gene family, sug-

gesting that it plays a regulatory role in RNA editing for trauma-exposed individuals [27]. Consis-

tently, we highlighted ADARB2 (Fig 5E) as the most significant LDG, with significantly

upregulated gene expression patterns in excitatory neurons from PTSD samples (0.809822 log-

fold change, P value 2.82E-23). Combined, results demonstrate iHerd’s ability to highlight exten-

sive cell-type-specific divergent genes in brain disorders with molecular insights.

To validate the effectiveness of the selection of cell-type-specific risk genes by iHerd, we

examine the L2 distance in the common space across different conditions. Fig 5C lists the top

rewiring gene ENPEP and top conserved gene ZNF804A from controls to MDD in excitatory

neurons; Fig 5F lists the top rewiring gene TGFBR3 and top conserved gene SLC26A4-AS1
from controls to PTSD in excitatory neurons. Arrows around the circles point to other genes,

and the colors of the arrows indicate normalized correlation changes. Between two genes, red

denotes an increasing correlation while blue denotes a decreasing correlation, with deeper col-

ors signifying larger changes. In the color bar shown, the green color indicates almost no cor-

relation change. The top changed gene prioritized by iHerd shows large correlation changes

with others while the top conserved gene shows almost no change, indicating that embeddings

generated by iHerd reliably preserve the network correlation information. By faithfully reflect-

ing the GCN changes, iHerd provides cell-type-specific risk genes with good interpretability.

iHerd outperforms four baseline methods in the LDG/EDG distinction task

a) Simulation experiment settings. We established artificial gene co-expression patterns

for late and early divergent genes (LDGs and EDGs) using excitatory neurons’ GCN, as shown

in Fig 6A.

• Construction of Late Divergent Gene (LDG). One gene in the GCN was designated a "modi-

fied gene," with a "template gene" chosen from the same cluster. We matched edge weights

between the modified and template genes, forming a modified GCN with LDG.

• Construction of Early Divergent Gene (EDG). One gene in the GCN was designated a "mod-

ified gene," with a "template gene" chosen from a different cluster. We matched edge weights

between the modified and template genes, forming a modified GCN with EDG.

• Repeat. Ultimately, we produced 2871 sample sets. Each set contained an original GCN, two

modified GCNs (LDG and EDG), and a corresponding modified gene. Genes identified as

individual clusters by the Louvain algorithm were excluded from this process.
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b) Evaluation metric and results. We compared the ’modified gene’ changes across LDG

and EDG scenarios. The proportion of simulations where EDG changes exceeded LDG

changes, was used as the final accuracy measure. We found that iHerd consistently out-per-

formed four baseline methods in accurately classifying 91.8% of cases (Table 4).

c) False positive rate analysis. We carried out a false positive rate analysis on GCN data

to evaluate the robustness of iHerd. As discussed in section 1.4, we computed the network dis-

tance, in two scenarios: 1) inputting two different GCNs (Δdf), and 2) repeating input of the

same GCN (Δdb). We ran a control GCN through iHerd 100 times, comparing each result to a

different GCN and calculated the average node distance among the control runs. As before,

the background distance Δdb (0.41) was significantly smaller than the foreground distance Δdf
(1.42, P value = 2e-251), confirming iHerd’s robustness (Fig 6B and 6C).

iHerd shows the robustness and biological relevance of its graph coarsen

module

We conducted additional experiments to evaluate the stability and reproducibility of iHerd on

the same network (run 100 times). For each run, we calculated the size of the communities

detected by the algorithm (focusing on communities with more than 50 nodes). We found the

distribution of community sizes to be consistent across different runs (Fig 7A). Next, we

repeated 100 runs to perform the Kolmogorov-Smirnov (KS) test and found the community

size distribution between any run pair is similar (average P = 0.816). Additionally, we com-

puted the overlap between communities from each pair of runs by focusing on one commu-

nity. The heatmap in Fig 7B showed that most overlaps are above 0.9, indicating a high degree

of consistency. Taken together, these results suggest that our algorithm shows strong consis-

tency and stability across different runs, thereby providing reliable and reproducible outcomes.

Next, we conducted an enrichment analysis using established GO Molecular Function terms

to evaluate the biological relevance of the identified gene communities. After transforming the

P-values to a "-log10" scale, we created a heatmap (Fig 7C) for visual comparison. The heatmap

revealed unique biological processes within each community, each represented by different

enriched GO terms. This diversity confirms iHerd’s effectiveness in identifying biologically

significant and diverse gene communities."

Parameter tuning for iHerd
We next analyzed the parameter tuning process of iHerd. Fig 8A shows the number of genes

at different levels for different conditions in excitatory neurons and microglia. Through the

graph coarsening module, iHerd significantly reduces the number of nodes, thus providing

node embeddings with richer global information. Fig 8B records the running time with

respect to the embedding dimensions with different basic graph learning and refinement

methods in controls in excitatory neurons and microglia. While a larger embedding

Table 4. EDG vs LDG benchmarking.

Methods Accuracy

Node Degree 0.672

Clustering Coefficient 0.743

PageRank 0.529

Contrastive Learning 0.856

iHerd 0.918

https://doi.org/10.1371/journal.pcbi.1011444.t004
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Fig 7. The robustness and biological relevance analysis of the graph coarsen module in iHerd. (a) The boxplot depicting the distribution of community sizes

(node counts) in each run of iHerd. (b) A heatmap visualization of the overlap ratios calculated between communities identified across multiple runs of iHerd.

(c) Enrichment heatmap from GO enrichment analysis of communities identified by iHerd.

https://doi.org/10.1371/journal.pcbi.1011444.g007

Fig 8. The parameter tuning for iHerd. (a) The bar plot of the number of nodes per level for controls and disease samples under excitatory neurons and

microglia. (b) The line plot of running time with different embedding dimensions and different learning frameworks for controls under excitatory neurons and

microglia. (c) The line plot of network modality with different coarsen times (zero coarsen times indicates the initial state).

https://doi.org/10.1371/journal.pcbi.1011444.g008
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dimension will slightly increase the running time, iHerd can generate embeddings for all hier-

archical levels within 20 seconds without a graphics processing unit, showing excellent scal-

ability. Fig 8C records the modality changes as the coarsening times increase. For different

conditions in excitatory neurons and microglia, the network modality barely grows after two

graph coarsening operations. Based on this result, we chose two coarsening times as the final

hyper-parameters to achieve better hierarchical embeddings.

Discussion

This paper presents a computational method, called iHerd, to quantify network changes and

prioritize risk genes in disease. While recent developments have shed light on gene prioritiza-

tion in diseases, it is still hard for people to quantify changes in GRNs and GCNs. Leveraging

the advantage of hierarchical graph neural networks, iHerd coarsens the fine-grained input

network to a coarsen-grained network, learns the embeddings for each cluster, and refines the

embedding for each node. By aligning embeddings of different networks, we can quantitatively

analyze changes in different genes at different levels. To prove the effectiveness of iHerd, we

analyze the network changes on GRNs and GCNs. We showed that iHerd can faithfully high-

light the changed TFs and the divergent genes in each respective network across different cell

types and conditions. We introduced two kinds of divergent genes here: early divergent gene

and late divergent gene, providing a more insightful gene prioritization analysis and enhancing

the interpretability of our model.

It is worth mentioning that iHerd is a flexible framework and it can combine different

graph learning methods (focus on structural information or local neighborhood) depending

on the input network. Meanwhile, how to effectively combine the node features into this

framework would be a promising direction of future exploration. Finally, we have imple-

mented iHerd as an open-source software that is freely downloadable to the public. With the

exponential growth of disease data, iHerd can be a useful tool for the community to prioritize

genes in diseases and quantify their changes at different stages.

Methods

As shown in Fig 1, iHerd has four main components: Graph Coarsen module (GC), Graph

Representation Learning module (GRL), Embedding Refinement module (ER), and the Hier-

archical Embedding Alignment module (HEA). We will introduce the data preprocessing

steps and each module of iHerd in the following sections.

Data preprocessing

Gene regulatory networks data preprocessing. We obtained the ENCODE networks for

two cell lines, GM12878 and K562, and focused on their respective TF regulatory networks,

which are subnetworks of the official ENCODE networks (We used the 2017 freeze for all ChIP-

seq data, and the detailed experiment ID has been included in S1 Table). The official ENCODE

network for GM12878 consists of 8,633 genes (including 101 TFs), and 24,093 edges. Similarly,

for the K562 cell line, the official ENCODE network consists of 11,250 genes (including 197 TFs),

and 43,253 edges. We provided a detailed Table 5 describing the network statistics. To investigate

the regulation of TFs, we extracted these TFs from the original networks and focused on their

interactions. This process resulted in two TF regulatory networks, each sharing a common set of

40 TFs. These TF-to-TF GRNs were used as inputs for further analysis in iHerd.
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scRNA-seq data preprocessing and quality control

A series of quality control steps were taken to reduce the effects of high dimensionality, low

capture efficiency, and noise in scRNA-seq data. First, CellBender was used to eliminate tech-

nical artifacts and background noise in each scRNA-seq sample. Then DoubletDetection and

Scrublet were used to remove doublets from each scRNA-seq sample. All samples were aggre-

gated in Pegasus (v.1.5.0), a python tool for analyzing transcriptomes of single cells Then, cells

were further filtered based on the following criteria: at most 10% mitochondrial genes, at most

2% ribosomal genes, at least 200 genes, and at least 500 UMIs. Mitochondrial, sexual, and ribo-

somal genes were excluded, and only the robust genes were included in the final data object.

After all the filtration steps, dimensionality reduction, batch correction with Harmony, cluster-

ing, and annotation were performed in Pegasus. Seven brain PFC samples were used in our

experiments: three CON samples (MS000800, MS0184LL, MS0198ZZ), two PTSD samples

(MS0098CC, MS0146ZZ), and two MDD samples (MS0096AA, MS0204RR). We then con-

structed cell-type-specific gene co-expression networks based on the following steps. In the

networks, we only considered protein-coding genes that are top 5,000 highly variable and are

expressed in at least 5% of the cells, respectively in each cell type. First, to overcome the spar-

sity of scRNA-seq data, we constructed metacells in a procedure like scWGCNA [28]. Each

metacell is an aggregation of 100 cells that are nearest neighbors in 20 PCA dimensions. We

required that the aggregated cells come from the same cell type, same gender group, and the

same disease condition. All metacells from the same cell type are then collected to form the

metacell-by-gene expression matrices normalized by metacells and scaled by genes. Finally, for

each condition and each cell type, we computed unsigned Pearson correlations for all pairs of

genes to construct gene co-expression networks (GCN). Then GCNs with different conditions

and cell types were fed into iHerd for further analysis. The scRNA-seq data was generated by

the Girgenti lab, which can be accessed by GSE216270.

Graph coarsen

Given a graph G = (V, E, X), V is a set of n nodes; E is a set of m edges and X 2 Rn�dx is the

node features, where dx is the dimension of node features. The Graph Coarsen module gener-

ates a series of hierarchical attributed networks from the finest to the most coarsened:

G ¼ G0 � � � � � Gi � � � � � Gkh , where� denotes the coarsen operation, Gi is the coarsened

graph on the i-th coarsen layer and kh is the predefined number of coarsen layers. In this mod-

ule, the Louvain algorithm [29] is employed to detect non-overlapping communities and form

super-nodes for coarser graphs. This module consists of two phases: partition and

reconstruction.

Table 5. Statistics of GRNs.

GM12878 K562

TF-to-Gene # of Nodes 8,633 11,250

# of Edges 24,093 43,263

TF-to-TF # of Nodes 69 151

# of Edges 201 825

Common

TF-to-TF

# of Nodes 40

# of Edges 89

https://doi.org/10.1371/journal.pcbi.1011444.t005
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Partition

The partition phase aims to maximize modularity, which is a measure of the quality of divi-

sions inside a network structure. For a community c in a graph, its modularity is defined as:

Qc ¼
1

2m

X

ij
Aij �

kikj
2m

� �

; ð1Þ

where Aij denotes the edge weight between nodes i and j in community c, m is the sum of all

edge weights, and ki and kj are the sums of edge weights of nodes i and j respectively. Given a

graph Gi = (Vi, Ei, Xi), the partition phase starts by assigning each node to its own community.

For each vertex vxi2Vi, the change of modularity ΔQ is calculated by removing vxi from its cur-

rent community to its neighbors After ΔQ of all neighbor communities of vxi have been calcu-

lated, vxi is re-assigned to the community that results in the highest modularity gain. The

partition phase repeats until a local maximum of modularity is reached. In our experience,

however, we found that two iterations of this process typically lead to an optimal trade-off

between modularity and computational efficiency. A more detailed overview of the parameter

tuning process is shown in the “Parameter tuning for iHerd” section.

Reconstruction

The reconstruction phase constructs a new coarser graph Gi+1 = (Vi+1, Ei+1, Xi+1) and in this

process, each super-node (community) of graph Gi becomes a new node vi+12Vi+1. An edge

epqi+12Ei+1 is created if nodes vai and vbi at a coarser level i has an edge eabi2Ei, where vai and

vbi are assigned to super-nodes vpi+1 and vqi+1. Edge weight of epqi+1 is updated as the summa-

tion of all edge weights between those two communities. Then, the new graph Gi+1 with more

concise topological proximity of the original network G0 is stored and passed to this module

again. This GC module continues with the new coarsen graph Gi+1 and repeats the process

until kh times or there is no obvious modularity gain. After this module, we get a series of net-

works at different coarseness levels: G0 � � � � � Gi � � � � � Gkh such that |Vi−1|>|Vi| and |Ei
−1|>|Ei|, i = 1,2,3,. . .,kh.

Embedding on the coarsest graph

After the GC module, an embedding of the network at the coarsest granularity is generated.

The coarsest network Gkh ¼ ðVkh ;Ekh ;XkhÞ, which maintains the most concise structural infor-

mation of the original network, is passed into the graph representation learning module to

produce the first proximate graph representation of the original network. The embedding of

the coarsest hierarchical attributed network is generated by the following equation:

Zkh ¼ GRLðGkhÞ, where GRL is the graph representation learning module and Zkh 2 RjVkh j�d.

Graph coarsen embedding refinement

The Embedding Refinement module (ER) leverages unsupervised graph neural network

(GNN) to refine the coarsest embedding to the finest-grained embedding:

Zkh ! � � � ! Zi ! � � � ! Z0. The primary goal of this module is to attain a trained GNN

model that can produce the finer-grained embedding Zi as equation: Zi = ER(Zi+1, Gi). Then,

through the GNN model, Z0 for G0 can then be iteratively attained from the coarsest network

ðZkh ;GkhÞ to the finest grained one in a backpropagation manner while preserving the topolog-

ical structure information of the coarsest network.
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Initialization

Before the GNN model is employed to generate Zi from (Zi+1, Gi), Zi is initialized based on

ðZiþ1;GiÞ : Zi ¼ InitializeðZiþ1;GiÞ: Initializeð�Þ gives the node representations of zji+12Zi+1 to

zsi2Zi, where vsi is inside the super-node (community) Vj
i+1.

Unsupervised graph neural network

When a trained GNN model is employed, the embedding of a finer network Zi 2 RjVi j�d is gen-

erated: Zi = H(Zi, Gi), where H(�) denotes a layer-wise linear GraphSAGE model [30]. A single

layer is defined as H(l)(�), 8l2{1,. . .,L}, where L is the total number of layers in the model. For a

given node vi2Vi, H(l)(Zi, Gi) consists of the following two steps:

hðlÞNðvÞ  AGGREGATElðfhu
ðl� 1Þ

; 8u 2 NðvÞgÞ; ð2Þ

hðlÞv  sðWðlÞ � CONCATðhv
ðl� 1Þ

; hðlÞNðvÞÞÞ: ð3Þ

Here, {hu(l−1), 8u2N(v)} denotes the representations of the neighbors of v in the last layer (l
−1) and the neighbors from the neighborhood function N(v). AGGREGATEk(�) denotes a

function that will aggregate the representations of neighbor nodes, such as the mean operator,

LSTMs, max-pooling, and so on. CONCAT(�) is the concatenation operator of two embedding

matrices. W(l) is a layer-specific trainable weight matrix and σ(�) is a non-linear activation

function [31]. At the final layer, we attain representation of each node at coarsen level i:
zvi hvL, 8v2Vi. To train this GNN model and get trained W(l) for L layers, we define a loss

function as follows:

Loss ¼
1

jVkh j
kZkh � HðlÞ Zkh ;Gkh

� �
k: ð4Þ

The base embedding generated from the GRL module plays the part of “ground-truth”

embedding of Gkh . The difference between Zkh and the predicted embedding HðlÞðZkh ;GkhÞ is

the training loss. The model is trained only with the coarsest graph Gkh once. Then it will be

employed to generate graph representations for all previous levels as described above. The

unsupervised graph neural network model in this module can also be flexible.

Hierarchical embedding alignment

In the Graph Coarsen module, the hierarchical embedding of a coarser network contains more

concise global clustering structural information at a higher level, while that of a finer network

contains information at a more local level [32]. Since embeddings at different levels provide

different characteristics, we need to compare embeddings at all levels to get an integrated

insight into the network changes.

Mapping matrices by solving the orthogonal proscrutes problem

Due to the randomness of initialization and the training process, we cannot directly compare

the embeddings from two different running times [33]. We can calculate the distance between

embeddings, by solving the orthogonal proscrutes problem [34] and mapping all embeddings

onto a common space. Given two matrices M12Rn×d, M22Rn×d, we search for a unitary matrix

U2Rd×d that best maps M2 to M1, which formulated by minimizing kM1 � M2U2k
2

F , where

k�kF is the Frobenius norm. In the HEA module, iHerd generates a mapping matrix U(s1,s2) for

the representations Z0
s1 and Z0

s2 at the finest granularity level between two samples s1 and s2. It
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is then used to align other embeddings at different coarsen levels for ðZi
s1; . . . ;Zkh

s1 Þ and

ðZi
s2; . . . ;Zkh

s2 Þ.

Distance calculation

For any pair of hierarchical embeddings at each level ðZi
s1;Z

i
s2Þ; i 2 f1; 2; . . . ; khg, distances are

calculated for all nodes after the alignment. Here, we define two categories of genes that need

to be prioritized: early divergent genes (EDGs) and late divergent genes (LDGs). EDGs main-

tain high distances at both coarsen-grained and fine-grained levels. They diverge at early

stages, and consistently show their high divergence in later stages. In contrast, LDGs show

high distances only at fine-grained levels. For LDGs, significant topological differences only

occur on the local scale.

Let z0

ðv0
1
;s1Þ and z0

ðv0
1
;s2Þ denote the embedding vectors of node v0

1
in samples s1 and s2 respec-

tively at the finest-grained level. We also have zkh
ðv
kh
1
;s1Þ

and zkh
ðv
kh
1
;s2Þ

, where ðvkh1 ; s1Þ and ðvkh1 ; s2Þ

are the corresponding super-nodes (communities) for v0
1

at the most coarsen-grained level kh
for samples s1 and s2 respectively. The filter equations for EDGs and LDGs are as follows:

Dðzkh
ðv
kh
1
;s1Þ
; zkh
ðv
kh
1
;s2Þ
Þ � Dðz0

ðv0
1
;s1Þ; z

0

ðv0
1
;s2ÞÞ; ð5Þ

Dðzkh
ðv
kh
1
;s1Þ
; zkh
ðv
kh
1
;s2Þ
Þ � Dðz0

ðv0
1
;s1Þ; z

0

ðv0
1
;s2ÞÞ; ð6Þ

where D(�) denotes a nested function for mapping embeddings into a common space and cal-

culating distance values between nodes. A node that falls into either of these two categories

should be prioritized and picked out for further analysis.

Supporting information

S1 Table. Details of the 2017 freeze for all ChIP-seq data.
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