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Granular flow has solid-, liquid-, or even gas-like behaviors, which can be described through discrete element
method (DEM)-based simulations. Although the DEM simulation has advantages in studying particle-scale infor-
mation, it is computationally intensive. Alternatively, this work proposes to combine the DEM and deep learning
methods to predict granular flow behaviors in a wedge-shaped hopper. As the image-based labels are extracted
from the DEM simulation, an Alexnet-fully connection (FC)model canmake point-to-point predictions about the
discharge time. Furthermore, when the first 20% of image-based datasets in the timing sequence are used to train
a convolutional neural network (CNN)-long short-term memory (LSTM) network, it can make process predic-
tions about the number ratio of remaining particles (NRRP) in the hopper vs. the discharge time. Although
these attempts have some shortcomings at the present stage, more efforts are encouraged to stimulate the future
potential of image-based prediction through the combined methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Due to the solid-, liquid-, or even gas-like properties of the granular
materials [1,2], the granular flow presents unexpected behaviors, such
as segregation [3–7], blockage [8–10] and eccentric flow [11–13] and
so on. In order to overcome thedifficulties in experimental characteriza-
tion on aforementioned granular behaviors, Janssen et al. [14], as early
as 1895, developed a continuum medium model to analyze the parti-
cles' static stress of the silo effect, while Adler et al. [15] established a
molecular dynamics model to track particles' motions. Furthermore,
Ogawa [16] introduced the square deviation of velocity fluctuations to
characterize the average granular temperature, which was later used
to modify the standard dynamic theory of inelastic collisions. Until the
1970s, Cundall and Strack [17] developed the Discrete Element Method
(DEM) to analyze rock mechanic problems. Since then, this numerical
solution has become one of the most powerful and effective methods
of handling various engineering granular problems [18–22] by continu-
ously updating itself for more complex systems [23–28]. Nevertheless,
e and Engineering, Chongqing
the DEM simulation is computationally intensive, which limits the
scale of a simulation [29,30]. Alternatively, machine learning methods
have been introduced in recent years to improve the DEM computing
efficiency. First of all, the machine learningmethods were used to iden-
tify and calibrate a set of DEM input parameters by fitting the nonlinear
relationship between the dynamic macroscopic particle properties and
the DEM parameters [31–34]. Specifically, Benvenuti et al. [31] and Ye
et al. [32] identified the DEM parameters of any given non-cohesive
granular materials by training the artificial neural network (ANN) and
backpropagation (BP) neural network, respectively. Cheng et al. [33]
proposed a Bayesian calibration procedure for the DEM modeling of
dense granular materials, while Ma et al. [34] calibrated the micro-
parameters of the rockfill based on a memetic algorithm with support
vector machine (SVM). Second, the machine learning methods were
combined to predict different granularflowbehaviors [35]. For instance,
in order to predict the granular velocity distribution and its influencing
factors, Kumar et al. [36] selected seven parameters from the DEM sim-
ulation, such as the bulk density, the mean diameter, the particle-
particle coefficient of friction and so on, as the inputs to train an ANN
model. He et al. [37] used the relative neighbor particle positions as
the inputs to train another ANN network, which improved the accuracy
in drag force prediction. Third, the machine learning methods played a
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bridge-like role in the gap between different simulation scales [38], and
the machine learning methods were proved to significantly reduce the
computational burden while retain the prediction accuracy [39–41].

Although the granular flow has been studied through the combined
DEM and machine learning methods, most predications of granular be-
haviors are data-driven rather than image-driven. However, the contin-
uous real-time images, in comparison to the fetched data, are easier to
provide intuitive results without further information extraction. Mean-
while, the deep learning algorithms are found to be very good at image
recognition [42]. Therefore, this work focuses on using deep learning
methods to predict the granular flow in a wedge-shaped hopper
based on the image-based datasets extracted from the DEM simulation.
The different initial granular packed patterns are first defined while the
corresponding discharge processes are simulated by the DEM. After the
relationships between instantaneous granular flow images and the dis-
charge time and the number ratio of remaining particles (NRRP) in the
hopper are established, the Alexnet-fully connection (FC) model is pro-
posed to make point-to-point predictions about the discharge time,
while the convolutional neural network (CNN)-long short-term mem-
ory (LSTM) network is proposed to make process predictions about
the NRRP vs. the discharge time.

2. DEM simulation and image-based information collection

2.1. DEM Simulation

Briefly, the principles of DEM are using theNewton equations ofmo-
tion to describe the translational and rotationalmotions of each particle,
and its details can be found anywhere [21,22,43]. The geometrical di-
mensions of the wedge-shaped hopper are demonstrated in Fig. 1(a),
while the DEM parameters are validated against the experimental mea-
surements reported in our previous works [20,44].

One uniformly mixed bed (denoted by A) and four layer-by-layer
mixed beds (denoted by B1 to B4) are defined as the initial binary-
sized granular packed patterns in Fig. 1(b). Besides, B1 and B2 have
two layers while B3 and B4 have three layers. Eleven randomly chang-
ing parameters of five cases in each pattern (twenty-five cases in
total), including coefficient of friction i.e. particle-particle (μp-p) and
particle-wall (μp-w), coefficient of restitution i.e. particle-particle (ep-p)
and particle-wall (ep-w), and coefficient of rolling friction (μr), particle
density (ρ), diameter (d), Young's modulus (E), Poisson ratio (υ), num-
ber of particles (N), and volume fraction of fine particles (Φs), are listed
in Table 1. Meanwhile, the shape of particles is spherical and the initial
bulk volume in each case keeps constant by taking that of 500 g
weighted 6 mm and 2100 kg/m3 particles as a criterion. Consequently,
the DEM simulations are carried out to generate instantaneous granular
flow images for the following predictions.

2.2. Labels collection and image-based datasets preparation

As explained in Fig. 2, each instantaneous granular flow image is first
extracted from the DEM simulation, and labeled a discharge timewhich
Fig. 1.DEM simulation conditions: (a) the geometrical dimensions of thewedge-shape hopper
granular packed patterns initialized in the hopper.
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is defined as the time required for the remaining particles in the hopper
to discharge completely in the DEM simulation. At the same time, the
NRRP is selected as the second label to characterize the granular flow
images, and it is determined by Eq. (1).

NRRP ¼ Nr

Ni
ð1Þ

where, Nr represents the number of particles remaining in the hopper
obtained from the DEM simulation while Ni represents the initial num-
ber of particles in the hopper.

Second, each image is converted into a three-dimensional data ma-
trix, and the transformed datasets are applied to train the selected
deep learning models. At last, the trained CNN-FC model realizes the
point-to-point prediction of the discharge time, while the trained
CNN-LSTM network model achieves the process prediction of the
NRRP. In addition, all the DEM simulations are carried out on aworksta-
tion equipped with dual Inter Xeon E5-2640v4 (2.4 GHz) CPU, 128 GB
RAM, 240 GB SSD, 4 TB hard disk, and Ubuntu 18.04 operating system
with LIGGGHTS 3.7.0 [45], while the deep learning training and
predicting tasks are accomplished on a workstation equipped with a
GTX 1080Ti GPU, Intel Core i7 8700k (3.7 GHz) CPU, 64 GB RAM,
250 GB SSD, 3 TB hard disk, and Ubuntu 18.04 operating system with
Pytorch 1.4.0 backend in Python 3.6.

3. Image-based point-to-point prediction of the discharge time

3.1. Image pre-processing and parameter sensitivity analysis

52,353 snapshots of the granular flow in the wedge-shaped hopper
are randomly extracted from the front view in the aforementioned
twenty-five cases of DEM simulations. Given that the original images'
size is (420, 230, 3) in Fig. 3(a), the images are first cropped from the
center to a rectangular size (224, 224, 3). The deep learning algorithm
then greys these re-shaped images and converts them into a one-
dimensional matrix in Fig. 3(b), which is immediately used for the sub-
sequent calculation process. However, before the training process, it is
necessary to evaluate the impacts of eleven parameters (refer to
Table 1) on the discharge time. Thus, this work employs the gray rela-
tional analysis (GRA) [46] as the criteria, and the specific steps are ex-
plained as follows:

Step 1: For a given dataset, determine the comparative sequence
X = {xij, i = 1,2,3…n, j = 1,2,3…m} and the reference sequence Y =
{yj}, where x and y respectively represent parameter’ value and the to-
tally discharge time which represents the discharge time of the initial
packed stage, while the subscripts i and j respectively represent differ-
ent parameters and cases.

Step 2: Normalize both sequences by the initialization normalization
method (Eqs. (2) and (3)).

xij0 ¼
xij
xi1

ð2Þ
and (b) the uniformlymixed (A type) and layer-by-layermixed (B1-B4 type) binary-sized



Table 1
The randomly changing parameters for the DEM simulation under five initial granular packed patterns.

No. N (−) υ (−) E (GPa) Φs(−) ep-p (−) ew-p (−) μp-p (−) μw-p (−) μr (−) d(mm) ρ(kg/m3)

A-1 620 0.35 0.01 0.2 0.3 0.1 0.5 0.2 0.08 6,9 2800
A-2 10,180 0.26 0.375 0.5 0.5 0.8 0.6 0.7 0.02 3,6 2100
A-3 5450 0.42 0.065 0.2 0.4 0.7 0.9 0.2 0.05 3,6 1800
A-4 14,700 0.3 0.01 0.8 0.7 0.3 0.2 0.9 0.07 3,9 2500
A-5 7900 0.4 0.01 0.4 0.9 0.1 0.7 0.1 0.01 3,9 2800
B1-1 6875 0.42 0.01 0.3 0.9 0.9 0.3 0.3 0.06 3,6 1500
B1-2 7596 0.33 0.01 0.4 0.4 0.8 0.4 0.2 0.03 3,9 1500
B1-3 1239 0.42 0.01 0.4 0.3 0.5 0.2 0.1 0.08 6,9 1800
B1-4 2394 0.3 0.375 0.1 0.7 0.1 0.4 0.5 0.08 3,9 2100
B1-5 8464 0.4 0.065 0.4 0.5 0.3 0.5 0.9 0.06 3,6 2800
B2-1 1239 0.26 0.375 0.4 0.6 0.7 0.5 0.7 0.04 6,9 2800
B2-2 3696 0.45 0.01 0.1 0.2 0.2 0.9 0.2 0.09 3,6 2500
B2-3 8464 0.35 0.01 0.4 0.8 0.2 0.5 0.8 0.06 3,6 2100
B2-4 1094 0.3 0.01 0.3 0.9 0.9 0.1 0.7 0.01 6,9 2100
B2-5 9330 0.4 0.2 0.5 0.1 0.1 0.8 0.2 0.02 3,9 1800
B3-1 5285 0.26 0.01 0.2 0.6 0.3 0.3 0.2 0.01 3,6 2500
B3-2 4128 0.4 0.2 0.2 0.7 0.1 0.3 0.1 0.07 3,9 2800
B3-3 950 0.4 0.375 0.2 0.3 0.1 0.2 0.1 0.09 6,9 2100
B3-4 5862 0.35 0.065 0.3 0.9 0.8 0.6 0.6 0.04 3,9 2100
B3-5 5170 0.35 0.2 0.2 0.8 0.9 0.8 0.9 0.02 3,6 2800
B4-1 6874 0.35 0.2 0.3 0.8 0.4 0.9 0.3 0.02 3,6 1500
B4-2 9330 0.33 0.01 0.5 0.6 0.1 0.6 0.8 0.04 3,9 2500
B4-3 805 0.2 0.375 0.1 0.1 0.9 0.1 0.1 0.05 6,9 2100
B4-4 1094 0.2 0.065 0.3 0.5 0.5 0.2 0.8 0.09 6,9 2100
B4-5 4128 0.2 0.375 0.2 0.9 0.2 0.3 0.9 0.08 3,9 2100
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yj
0 ¼ yj

y1
ð3Þ

Step 3: Calculate the grey relational coefficient (Eq. (4)).

ξij ¼
min
i

min
j

y j
0−xij0

�� ��þ ρ � max
i

max
j

j yj
0−xij0 j

yj
0−xij0

�� ��þ ρ � max
i

max
j

j yj
0−xij0 j

ð4Þ

where ρ is the distinguishing coefficient, ρ∈[0,1], which is 0.5 in
this work.

Step 4: Calculate the GRA grade r (Eq. (5)).

ri Xi, Yð Þ ¼ 1
m

∑
m

j¼1
ξij ð5Þ

Step 5: Calculate the percentage weight of each parameter based on
GRA grade (Eq. (6))
Fig. 2. The flow diagram of proposed the DEM
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pi ¼
ri Xi, Yð Þ

∑
n

i¼1
ri Xi, Yð Þ

� 100% ð6Þ

The percentage weights to evaluate the impacts of eleven parame-
ters on the discharge time in different cases are depicted and compared
in Fig. 3(c), in which the mean results are highlighted in the middle. Al-
though the particle diameter out of the eleven parameters has the
greatest influence on the discharge time (11.14%) while the particle
Young's modulus has the least impact (7.17%), all the selected parame-
ters under present conditions make comparable contributions to the
discharge time.

3.2. Selection of training models

All the image-based datasets after pre-processing are randomly clas-
sified into training group (60%), testing group (20%), and cross
and deep learning combined methods.



Fig. 3. (a) The image pre-processing by re-shaping its size, (b) the explanations on greying the instantaneous image and converting it into a one-dimensionalmatrix, and (c) evaluating the
influences of eleven parameters on the discharge time by the GRA method.
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validation group (20%). Then those dataset in the first group are
used to train four CNN models, including Alexnet [47], Resnet-50
[48], VGG-16 and VGG-19 [49]. Thereafter, the trained models are
applied to test and validate, and their predicted results are com-
pared to the datasets in the validation group in Fig. 4, and the fur-
ther quantitative comparisons in terms of mean absolute error
(MAE, Eq. (7)), root mean square error (RMSE, Eq. (8)) and deter-
mination coefficient (R2, Eq. (9)), are summarized in Table 2. The
Alexnet model, which has the minimum MAE, RMSE values and
the maximum R2 value, is considered as the best CNN candidate
for the following prediction.

MAE ¼ 1
m

∑
m

i¼1
yi−ŷij j ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

∑
m

i¼1
yi−ŷið Þ2

s
ð8Þ
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R2 ¼ 1−
∑
m

i¼1
yi−ŷið Þ2

∑
m

i¼1
yi−ȳið Þ2

ð9Þ

where, m is the predicted length, and yi, ŷi, and ȳi respectively represent
the predicted value, the observed values, and the average value.

3.3. Proposed architecture for the point-to-point prediction

The above-selected Alexnetmodel is combinedwith the FCmodel to
establish an Alexnet-FC model to predict the discharge time, and its ar-
chitecture is explained in Fig. 5. In short, the left part employs the
Alexnet model to extract the features from the input images, while the
right part makes use of the FC model to analyze those features. As a re-
sult, the discharge time of granular flow in a wedge-shaped hopper can



Fig. 4. The comparison between the discharge times predicted by four CNN models and
validation datasets.

Table 2
The quantitative comparisons of the four CNN models' prediction performance.

Alexnet Resnet-50 Vgg-16 Vgg-19

MAE 46.617 358.937 50.336 62.751
RMSE 61.286 513.528 71.685 90.607
R2 0.997 0.714 0.995 0.994
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be predicted by feeding the proposed model with an arbitrary granular
flow image.

As a result, the predicted discharge times under five initial packed
patterns in the wedge-shaped hopper (refer to Fig. 1(b)) are compared
with the ground truth or observed values in Fig. 6, and the average rel-
ative errors are calculated (Eq. (10)) and shown in the insets. All the R2

values reach 0.997 or above, while themaximum of average relative er-
rors is 0.063. These results substantially prove that the proposed
Alexnet-FC model have excellent point-to-point prediction of the dis-
charge time corresponding to any instantaneous image of granular
flow in a wedge-shaped hopper.
Fig. 5. The proposed architecture combing the Alexne
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j Error j¼ 1
m

Xm
i¼1

j yi−ŷi j
ŷi

ð10Þ

where, m is the predicted length, yi denotes the predicted values, and ŷi
represents the ground truth or observed values.

4. Image-based process prediction of the NRRP

4.1. Description of the process prediction

Although the Alexnet-FC model in the previous section achieves the
point-to-point prediction of the discharge time, the process prediction
of the granular flow in the timing sequence is of greater interest for
practical applications. Therefore, the datasets of the NRRP, as defined
in the Section 2.2, are also extracted from the DEM simulated images,
and then they are sorted in a timing sequence rather than a random
or arbitrary sequence used in the previous section. In the first step,
only the first 20% of the NRRP datasets are employed to train the
model. Then the trained model would automatically predict the NRRP
distribution with the discharge time. The average relative errors be-
tween the predicted NRRP and simulated values are also calculated to
evaluate the prediction performance for the remaining process.

4.2. Proposed architecture for the process prediction

The LSTM network is an improved recurrent neural network (RNN)
[50]. Its basic unit is composed of the forget gate, input gate and output
gate, and the corresponding equations can be found in any LSTM related
deep learning literature [51,52]. This work uses the CNN-LSTM com-
bined network tomake the process prediction, and its architecture is ex-
plained in Fig. 7. The CNN part is responsible for the image features
extraction, while the LSTM part is in charge of the NRRP prediction. To
be more specific, the CNN has four convolutional layers (Conv2D), and
the numbers of convolution kernels in each layer are 32, 64, 128 and
25, respectively. The flatten operation is then performed to extract the
global features, which compress a three-dimensional vector array to a
one-dimensional vector array having 1024 elements. At last, four layers
of LSTM are connected in the back, and the numbers of neurons in each
layer are 4, 8, 16, and 32, respectively.

As a result, the training and predictingNRRP distributions under five
initial packed patterns in the wedge-shaped hopper (refer to Fig. 1(b))
with the discharge time are depicted in Fig. 8. There are three points
worthy to be noted. First, all the predicted NRRPs with the discharge
t and FC models for the point-to-point prediction.



Fig. 7. The proposed architecture combingCNNand LSTMnetworks for process prediction.

Fig. 6. The comparison between the predicted discharge times of granular flow under five
initial packed patterns in the wedge-shaped hopper (a) A; (b) B1; (c) B2; (d) B3; (e) B4
and the corresponding ground truth or observed values.
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time have the similar trends as simulated by the DEM. Second, the pre-
dicted results from the very beginning to the certain stage by the pro-
posed CNN-LSTM model are quite consistent with the DEM simulated
results, when the initial granular packed patterns are A, B2 and B3
types. Then the obvious deviations are noticed from the discharge
time at 1387 ms, 2163 ms and 1180 ms, respectively. Nevertheless,
the minimum average relative error in the three cases is 0.082. Third,
when the initial granular packed patters are B1 and B4 types, the devi-
ations between the predicted and simulated NRRPs increase from the
beginning of predicted stage. Therefore, their average relative errors
exceed 0.39.

Besides, taking the B2-1 case as an example, Fig. 9 shows that the
total CPU-hour spent on the DEM simulation is 4500 s. In contrast, the
image-based data collection from the DEM simulation costs 900 s,
while the subsequent model training and prediction respectively costs
197 s and 12 s. It means the total CPU-hour spent on the CNN-LSTMpre-
diction based on the DEM simulation is 1109s under present conditions.
Therefore, the proposed DEM-deep learning combinedmethod can save
about 3/4 of the DEM simulation time in this case.

Overall, the proposed CNN-LSTM model to some extent has the ca-
pability of the process prediction and presents a great potential for sav-
ing computation resource. However, more efforts on the parameters
optimization, the image pre-processing, the dataset diversity, and so
on, should be devoted to driving the application of the image-based pre-
diction in the future.
5. Conclusions

The deep learning-assisted prediction has advantages over the DEM
alone in the computing efficiency, the large-scale simulation solution,
and so on. Based on the extracted labels from the instantaneous DEM
simulated images, this work introduces the Alexnet-FC model and
CNN-LSTM model respectively to make the point-to-point and process



Fig. 8. The comparison between the predicted NRRPs vs. the discharge time and the DEM
simulated results under five initial packed patterns in the wedge-shaped hopper (a) A-1;
(b) B1-1; (c) B2-1; (d) B3-1; (e) B4-1.

Fig. 9. The comparison on the spent CPU-hour between the combined CNN-LSTMmethod
and the DEM simulation alone.
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predictions about granular flow behaviors in a wedge-shaped hopper.
The main findings under present conditions are highlighted as follows:

(1) Although the spherical particle diameter has the greatest influ-
ence on the discharge time whereas the Young's modulus has
165
the least influence, all the selected parametersmake comparable
contributions to the discharge time. Accordingly, the Alexnet-FC
model is proposed and proved to have the excellent ability of the
point-to-point prediction about the discharge time correspond-
ing to any instantaneous granular flow images.

(2) The CNN-LSTM model is proposed to use the first 20% of image-
based datasets in the timing sequence for training, and then the
trained network to some extent has the capability of the process
prediction about the NRRP distribution with the discharge time.
The proposed method can save about 3/4 of the total CPU-hour
spent on the DEM simulation alone under present conditions.
This work demonstrates great potential of combing the DEM
and deep learning methods to drive the image-based prediction,
when more works on the parameters optimization, the image
preprocess technique, the dataset diversity, and so on, need to
be done in the future.
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