
Neural Networks 154 (2022) 481–490

m
i
e
i
i
c
M
L
r
W
C
a
t

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Multivariate time-series classificationwith hierarchical variational
graph pooling
Ziheng Duan a,b,1, Haoyan Xu a,b,c,1, Yueyang Wang a,∗, Yida Huang a, Anni Ren b,
Zhongbin Xu b, Yizhou Sun c, Wei Wang c

a School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China
b College of Energy Engineering, Zhejiang University, Zhejiang, 310027, China
c Department of Computer Science, University of California, Los Angeles, CA 90095, USA

a r t i c l e i n f o

Article history:
Received 5 November 2021
Received in revised form 22 March 2022
Accepted 26 July 2022
Available online 2 August 2022

Keywords:
Multivariate time series classification
Graph neural networks
Graph pooling
Graph classification

a b s t r a c t

In recent years, multivariate time-series classification (MTSC) has attracted considerable attention
owing to the advancement of sensing technology. Existing deep-learning-based MTSC techniques,
which mostly rely on convolutional or recurrent neural networks, focus primarily on the temporal
dependency of a single time series. Based on this, complex pairwise dependencies among multivariate
variables can be better described using advanced graph methods, where each variable is regarded
as a node in the graph, and their dependencies are regarded as edges. Furthermore, current spatial–
temporal modeling (e.g., graph classification) methodologies based on graph neural networks (GNNs)
are inherently flat and cannot hierarchically aggregate node information. To address these limitations,
we propose a novel graph-pooling-based framework, MTPool, to obtain an expressive global represen-
tation of MTS. We first convert MTS slices into graphs using the interactions of variables via a graph
structure learning module and obtain the spatial–temporal graph node features via a temporal convo-
lutional module. To obtain global graph-level representation, we design an ‘‘encoder-decoder’’-based
variational graph pooling module to create adaptive centroids for cluster assignments. Then, we com-
bine GNNs and our proposed variational graph pooling layers for joint graph representation learning
and graph coarsening, after which the graph is progressively coarsened to one node. Finally, a differen-
tiable classifier uses this coarsened representation to obtain the final predicted class. Experiments on
ten benchmark datasets showed that MTPool outperforms state-of-the-art strategies in the MTSC task.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Multivariate time series (MTS), which are obtained from nu-
erous variables or sensors in our daily lives, have been utilized

n different investigations (Feng & Niu, 2021; Li et al., 2021; Shi
t al., 2021; Zhou et al., 2020). Attributable to cutting-edge sens-
ng techniques, the multivariate time-series classification (MTSC)
ssue, which recognizes the labels for MTS records, has attracted
onsiderable attention in recent years (Baldán & Benítez, 2019;
ori, Mendiburu, Miranda, & Lozano, 2019; Zhang, Gao, Lin, &
u, 2020). MTSC models have been applied in a broad range of
eal-world applications (Iwana, Frinken, & Uchida, 2020; Zhou,
ang, Huang, & Liu, 2021), such as sleep stage identification (Sun,
hen, Li, Fan, & Chen, 2019), healthcare (Kang & Choi, 2014),
nd action recognition (Yu & Lee, 2015). Specifically, MTS has
he following two significant attributes: (1) each univariate time

∗ Corresponding author.
E-mail address: yueyangwang@cqu.edu.cn (Y. Wang).

1 These authors contributed equally to this research.
ttps://doi.org/10.1016/j.neunet.2022.07.032
893-6080/© 2022 Elsevier Ltd. All rights reserved.
series has an inner temporal reliance mode, and (2) there always
exist complex hidden dependency relationships among different
MTS variables. Capturing these two attributes is a significant
contribution to achieving better classification performance but is
also a challenging task.

Several MTS classification methods have been proposed in
previous studies. Distance-based methods, such as dynamic time
warping (DTW) with k-NN (Seto, Zhang, & Zhou, 2015) and
feature-based methods such as the hidden unit logistic model
(HULM) (Pei, Dibeklioğlu, Tax, & van der Maaten, 2017), are suc-
cessful in classification tasks on many benchmark MTS datasets.
In any case, these methodologies require hefty crafting of data
preprocessing and feature engineering, and they cannot fully
explore the inner temporal reliance mode in individual univariate
time series. Recently, many deep-learning-based methods have
been exploited for end-to-end MTS classification. Fully convo-
lutional networks (FCNs) and residual networks (ResNets) can
achieve comparable or better performances than traditional
methods (Wang, Yan, & Oates, 2017). The MLSTM-FCN (Karim,

Majumdar, Darabi, & Harford, 2019) utilizes an LSTM layer and

https://doi.org/10.1016/j.neunet.2022.07.032
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.07.032&domain=pdf
mailto:yueyangwang@cqu.edu.cn
https://doi.org/10.1016/j.neunet.2022.07.032

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

a
r
b
p
m
t
a
q
v

l
m
v
r
B
M
a
a
a
s
m
T
i
s
r
m
d
2
d
n
p
v
T
g
c

e
l
t
S
t
a
c
2
t
t
p
c
e
M
p
a
s
d
M
c
v
c

p
c
u
b
f
T
g

stacked convolutional neural network (CNN) layer to obtain
epresentations. MLSTM-FCN also uses squeeze-and-excitation
locks to enhance the performance by modeling the interde-
endencies between the variables. These deep learning-based
ethods have performed outstandingly in MTSC tasks. In general,

he current deep learning-based strategies mainly regard MTS
s sequences and design specific neural network layers for se-
uences to mine the pairwise dependencies among multivariate
ariables.
Intuitively, graphs could more naturally express complex re-

ationships of nodes than that of sequence. The use of graph
odels to measure complex hidden dependencies among multi-
ariate variables is promising (Wang et al., 2020) owing to the
apid development of graph-based techniques (Zhou et al., 2020).
ased on this assumption, we propose to construct graphs from
TS instead of directly utilizing the sequences of MTS. Thus, vari-
bles from MTS are constructed as nodes in the converted graph,
nd they are interlinked through their hidden relations. Graphs
re a particular type of information that portrays the relation-
hips between various entities or nodes. Existing mining graph
ethods, such as graph neural networks (GNNs) (Scarselli, Gori,
soi, Hagenbuchner, & Monfardini, 2008) and aggregating feature
nformation of adjoining nodes to learn node or graph repre-
entation, have been shown to successfully capture the hidden
elations of nodes. For example, GNNs are widely used in com-
unity detection (Liu et al., 2020; Su et al., 2021), graph anomaly
etection (Ma et al., 2021), and recommendation (Duan et al.,
021) owing to their ability to capture complex graph-based
ata. Consequently, mining MTS information using graph neural
etworks can be a promising method to save their temporal
atterns while exploiting the interdependency among time-series
ariables (Wang et al., 2020; Wu et al., 2020; Xu et al., 2020).
herefore, this study proposes the conversion of MTS slices into
raphs through graph structure learning and viewing the MTS
lassification task as a graph classification task.
The graph classification task aims to predict the type of the

ntire graph, where the graph structure and all of the initial node-
evel representations are inputs. For example, given a molecule,
he task could be to anticipate whether it is poisonous (Ranjan,
anyal, & Talukdar, 2020). Although current GNN-based spatial–
emporal modeling strategies can aggregate the graph structure
nd node-level representations, they are still inherently flat and
annot aggregate hub data in a hierarchical manner (Ying et al.,
018). Thus they cannot fully capture the hidden features of
he MTS when aggregating node-level to graph-level represen-
ations. Recently, some hierarchical pooling methods have been
roposed and have achieved promising results in many graph
lassification tasks, such as gPool (Gao & Ji, 2019), DiffPool (Ying
t al., 2018), and MemGNN (Khasahmadi, Hassani, Moradi, Lee, &
orris, 2020). These methods design specific hierarchical graph
ooling layers, where nodes are recursively aggregated to frame
cluster that addresses a hub in the pooled graph. gPool down-
amples by selecting the most important nodes, while DiffPool
ownsamples by clustering nodes using GNNs. As with DiffPool,
emGNN utilizes a multihead exhibit of memory keys and a
onvolution operator to sum the soft cluster assignments from
arious heads and calculate the attention scores among nodes and
lusters.
However, we observe that the key process of most hierarchical

ooling mechanisms, i.e., the generation of centroids for soft
luster assignments, is not related to the input graphs. This is
nexpected because the centroids of the different graphs should
e different. MemGNN randomly initializes centroids (keys) be-
ore training and makes the centroids learnable during training.
he centroids cannot change during testing; therefore, the testing

raphs can only use the same centroids as train graphs for cluster

482
assignments. Intuitively, each input graph should have specific
centroids based on its topology structure and node features. In
general, the pooling mechanism should maintain three significant
properties of graphs: (1) Permutation invariance: The centroids of
the same graph should be invariant when the permutation of the
nodes changes. (2) Input correlation: Centroids should change if
the input graph changes. (3) Dimensional adjustability. The dimen-
sions of the centroid matrix should be adjustable according to the
dimensions of the input and coarsened graphs.

To this end, we propose a novel MTS classification framework
called MTPool (Multivariate Time Series Classification with a Vari-
ational Graph Pooling). The goal of MTPool is to model inner
temporal reliance mode and complex hidden dependency relation-
ships among MTS variables and obtain MTS’s global representa-
tion. Specifically, MTPool first constructs a graph based on MTS
data through the graph structure learning module and learns the
spatial–temporal features of MTS through the temporal convo-
lution module. Then, to retain the three properties mentioned
above, we designed a novel pooling layer, variational pooling,
for graph coarsening. This pooling layer contains an ‘‘encoder–
decoder’’ architecture, which enables the generation of centroids
to be input-related and makes the model more inductive. Next,
MTPool adapts the GNNs to jointly learn graph representations,
after which the graph is progressively coarsened to one node.
Finally, these final coarsened graph-level representations can be
used as feature inputs for a differentiable classifier for MTSC
tasks. In summary, the fundamental contributions of our study
are as follows:

(1) To the best of our knowledge, we first propose a hierar-
chical graph-pooling-based framework to model MTS and
hierarchically generate its global representation for MTS
classification.

(2) We design MTPool as an end-to-end joint framework for
graph structure learning, temporal convolution, graph rep-
resentation learning, and graph coarsening.

(3) We propose a novel pooling method, which is called vari-
ational pooling. The centroids for the cluster assignments
are input-related to the input graphs, making the model
more inductive and leading to better performance.

(4) We conduct extensive experiments on MTS benchmark
datasets. Experiments on ten benchmark datasets show
that MTPool outperforms cutting-edge strategies in the
MTSC task.

2. Related work

2.1. Multivariate time-series classification

Most MTSC methods can be classified as distance-based,
feature-based, and deep-learning-based approaches. Here, we
discuss only deep-learning-based strategies.

Currently, two popular deep learning models, CNNs and re-
current neural networks (RNNs), are widely used for MTS clas-
sification. These models, regarding the MTS as sequences, often
use an LSTM layer and a stacked CNN layer to extract time-
series features, and a softmax layer is then applied to predict the
label (Zhang et al., 2020). For example, the MLSTM-FCN (Karim
et al., 2019) utilizes an LSTM layer and a stacked CNN layer
alongside squeeze-and-excitation blocks to obtain representa-
tions. TapNet (Zhang et al., 2020) also constructed an LSTM layer
and a stacked CNN layer, followed by an attentional prototype
network.

Deep-learning-based methods require less domain knowledge
in time-series data than traditional methods. Based on these
methods, we propose the use of a graph to model complex hidden

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

d
a
g
d

2

a
t
f
t
f
e
p
n
&
(
t
S
M
f
t
e
n
p
k
c

2

g
c
p
t
K
b
T
s
t
w
e
a
d
c
c
i
g
a
t
i

3

M
t
g

3

R
n
l
{

i
R
t

3

t
p
l
a

A

w
F
t

C

ependencies among multivariate variables. The dependencies
re explicitly described by the edges in the graph. Advanced
raph techniques also provide a variety of ways to describe the
ependencies.

.2. Graph neural networks

Scarselli et al. (2008) first proposed the idea and the concept of
GNN, which broadened existing neural networks with respect to
he handling of the information addressed in graph areas. GNNs
ollow a local aggregation mechanism, where the embedding vec-
or of a node is processed by recursively aggregating and trans-
orming the embedding vectors of its neighboring nodes (Duan
t al., 2021; Xu et al., 2021). Numerous GNN variations have been
roposed and have accomplished cutting-edge results for both
ode and graph classification assignments (Wang, Duan, Liao, Wu,
Zhuang, 2019). For example, a graph convolutional network

GCN) (Kipf & Welling, 2016) can be viewed as an approxima-
ion of the spectral-domain convolution of graph data. Graph-
AGE (Hamilton, Ying, & Leskovec, 2017) and FastGCN (Chen,
a, & Xiao, 2018) sample and aggregate the neighborhood in-

ormation while enabling training in batches yet forfeiting some
ime-proficiency. Graph attention networks (GATs) (Veličković
t al., 2017) are used to design a new method of gathering
eighbors through self-attention. Subsequently, a graph isomor-
hism network (GIN) (Xu, Hu, Leskovec, & Jegelka, 2018) and
-GNNs (Morris et al., 2019) were developed, presenting more
omplex and different types of aggregation.

.3. Graph pooling

Graph pooling strategies can be classified as topology-based,
lobal, and hierarchical pooling. Here, we only discuss hierar-
hical pooling methods. DiffPool (Ying et al., 2018) trains two
arallel GNNs to obtain the node-level representations and clus-
er assignments. gPool (Gao & Ji, 2019) and SAGPool (Lee, Lee, &
ang, 2019) dropped nodes from the input graph as opposed to
unching various nodes to frame a cluster in the pooled graph.
hey devised a top-K node choice method to create an initiated
ubgraph for subsequent layers. Although they are more efficient
han DiffPool, they do not gather nodes or calculate soft-edge
eights. This makes it difficult for them to preserve node and
dge information effectively. MemGNN (Khasahmadi et al., 2020)
re soft cluster assignments, and they utilize a clustering-friendly
istribution to determine the attention scores among nodes and
lusters. However, they generate centroids (which are used to
alculate soft assignments) without involving input graphs, which
s not logical intuitively because the centroids for different input
raphs should be different. We propose variational pooling using
n ‘‘encoder–decoder’’ architecture to obtain centroids to address
his limitation. It can maintain permutation invariance while
nputting centroids to graphs (Xu et al., 2020).

. Framework

In this section, we present the proposed MTPool in detail.
TPool can be divided into four parts: graph structure learning,

emporal convolution, spatial–temporal modeling, and variational
raph pooling. The schematic of MTPool is shown in Fig. 1.

.1. Problem formulation

An MTS can be represented as a matrix X = {x1, x2, . . . , xn} ∈
n×T , where T is the length of the time series, and n is the
umber of MTS variables. Each MTS is associated with a class
abel y from a predefined label set. Given a group of MTS X =
X1,X2, . . . ,XN } ∈ RN×n×T , where N is the number of MTS slices
n the group, and the corresponding labels Y = {y1, y2, . . . , yN} ∈
N , the research goal is to learn the mapping relationship be-
ween X and Y based on the proposed model.
483
.2. Graph structure learning

We propose a adaptive relation embedding strategy that adap-
ively learns the adjacency matrix A ∈ Rn×n to model com-
lex hidden dependency relationships in the MTS sample X . The
earned graph structure (adaptive adjacency matrix) A is defined
s

= Embed1(X), (1)

here Embed1() represents the graph structure learning function.
or the input MTS, X = {x1, x2, . . . , xn} ∈ Rn×T , we first calculate
he similarity matrix C between sampled MTS variables:

ij =
exp

(
−σ (distance(xi, xj))

)∑n
p=1 exp

(
−σ (distance(xi, xp))

) , (2)

where xi and xj denote the ith and jth MTS variables (i, j =
1, 2, . . . , n), and distance denotes a distance metric such as the
Euclidean distance, absolute value distance, and dynamic time
warping. Then, the adaptive adjacency matrix A can be calculated
as:

A = σ (CW adj), (3)

where σ is an activation function and W adj ∈ Rn×n are learnable
model parameters that adaptively generate an adjacency matrix
based on the input features. Moreover, to improve the training
efficiency, reduce the noise impact, and make the model more
robust, the threshold c1 is set to make the adjacency matrix
sparse:

Aij =

{
Aij, Aij ≥ c1.
0, Aij < c1.

(4)

Finally, row normalization is applied to A.

3.3. Temporal convolution

This stage aims to extract temporal features that are associated
with or change over time, as well as to construct a feature matrix
XTC ∈ Rn×d, where d is the obtained feature dimension. With
temporal convolution, we can obtain each MTS feature matrix as
follows:

XTC = Embed2(X), (5)

where Embed2() is the temporal convolution function. When in-
vestigating a time series, it is essential to consider its numerical
value as well as its pattern over the long haul. Time series in
the real world typically have numerous concurrent periodicities.
For example, the number of inhabitants in a specific city shows
a particular pattern each day. However, a significant example
can be seen by observing it over multiple weeks or one month.
In this manner, it is important to separate the highlights of the
time arrangement into units of numerous periods. To mimic the
present circumstances, we utilize numerous CNN channels with
various responsive fields, namely kernel sizes, to extract features
at multiple time scales.

For the ith CNN filter (the number of CNN filters is q and
i = 1, 2, . . . , q), given the input time series X , the feature vector
f i is expressed as follows: f i = σ (W i ∗ X + b), where ∗ denotes
the convolution operation, σ is a nonlinear activation function,
such as RELU(x) = max(0, x), W i ∈ R1×ks represents the ith CNN
kernel, ks is the kernel size, and b is the bias. The final feature

vector can be expressed as XTC =

(
|q|
∥
i=1

f i

)
, where

|q|
∥
i=1

is the

concatenation operation from feature f 1 to feature f q.
In this manner, temporal features under various periods are

extracted, providing a powerful reference for time-series classifi-

cation.

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

T
g
a

3

o
m
p
d

Z

w
f
s
c
(
k
p
a

z

w
z
t
b
m
r
r

3

3

a
c

x

w
t
s
e
t

Fig. 1. The general architecture of MTPool. The adjacency and feature matrices are constructed through graph structure learning and temporal convolution, respectively.
hen, GNNs aggregate and fuse the spatial–temporal features. After several pooling layers, the input graphs were hierarchically coarsened to one node to attain their
raph-level representations. Finally, these final output graph-level embeddings can be used as feature inputs for a differentiable classifier for MTSC tasks. MTPool is
n end-to-end joint framework for graph structure learning, temporal convolution, graph representation learning, and graph coarsening.
w
.4. Spatial–temporal modeling

In this stage, m GNN layers (G1,G2, . . . ,Gm) are employed
n the input graphs (denoted as XTC ,A) for spatial–temporal
odeling. GNN layers can fuse spatial dependencies and temporal
atterns to embed the features of nodes and transform the feature
imension of nodes to dencode, as shown in Eq. (6):

= Gm(Gm−1(...G1(XTC ,A)...)), (6)

here Z ∈ Rn×dencode represents the learned node embedding
rom the spatial–temporal modeling. Gj (j = 1, 2, . . . ,m) con-
ists of a GNN layer and a batch normalization layer. The GNN
an be GCN (Defferrard, Bresson, & Vandergheynst, 2016), GAT
Veličković et al., 2017), and GIN (Xu et al., 2018). Inspired by the
-GNN (Morris et al., 2019) model, this study uses the following
ropagation mechanism to calculate the forward-pass update of
node denoted by vi:
(j+1)
i = σ

(
z (j)i W (j)

1 +
∑
r∈N (i)

z (j)r W (j)
2

)
(7)

here W (j)
1 and W (j)

2 are parameter matrices of the jth GNN layer,
(j)
i is the hidden state of node vi in the jth layer, and N (i) denotes
he neighbors of node i. K-GNNs only perform information fusion
etween a specific node and its neighbors, ignoring the infor-
ation of other non-neighbor nodes. This design highlights the

elationships among variables, effectively avoiding information
edundancy caused by high dimensions.

.5. Variational graph pooling

.5.1. Overall transformation
In this stage, the encoded graph is hierarchically pooled into

single node to generate a graph-level representation. This suc-
essive process can be expressed as:

final = Pl(Pl−1(...P1(Z,A)...)), (8)

here Pj (j = 1, 2, . . . , l) represents one pooling layer. Af-
er stacking l pooling layers, we obtain the graph-level repre-
entation vector xfinal . For the jth pooling layer, Pj() can pool
ach encoded graph into a specific coarsened graph. The overall
ransformation of Pj() is given by Eq. (9):

X (j)
pool = σ

(
S (j)X (j)

encodeW
(j)
pool

)
,

A(j)
= σ

(
S (j)A(j) (S (j))

T
)

,
(9)
pool encode

484
here σ is a nonlinear activation function, W (j)
pool ∈ Rd(j)encode×d

(j)
pool is

a trainable parameter matrix that represents a linear transforma-
tion, and S (j)

∈ Rn(j)pool×n
(j)
encode is an assignment matrix representing

a projection from the original nodes to pooled nodes (clusters).
The details of calculating S(j) are presented in the next Sec-
tion 3.5.2. X (j)

encode ∈ Rn(j)encode×d
(j)
encode and A(j)

encode ∈ Rn(j)encode×n
(j)
encode

represent the encoded feature and adjacency matrix of the input
graph in the jth pooling layer; X (j)

pool ∈ Rn(j)pool×d
(j)
pool and A(j)

pool ∈

Rn(j)pool×n
(j)
pool represent the pooled feature and adjacency matrix of

the pooled graph in the jth pooling layer. In most cases, the
pooled graph contains fewer nodes than the input graph (n(j)

pool <

n(j)
encode). For the first pooling layer, we have X (0)

encode = Z and
A(0)
encode = A.

3.5.2. Computation of assignment matrix
In this section, we propose a new pooling method, variational

pooling, to address the limitations of existing methods, as dis-
cussed in Section 2.3, and to calculate S (j) in a more effective
way. Although many advanced graph pooling methods have been
proposed in recent years, they all have some limitations. For
example, MemGNN (Khasahmadi et al., 2020) utilizes a multihead
exhibit of memory keys and a convolution operator to sum the
soft cluster assignments from various heads. MemGNN utilizes a
clustering-friendly distribution to determine the attention scores
among nodes and clusters and performs better than DiffPool in
many tasks. Nevertheless, we observe that it generates memory
heads, which represent the new centroids in the space of pooled
graphs, without the involvement of the input graphs. However,
the centroids for different graphs should be different, and each
input graph should have its corresponding centroids based on its
topology structure and node features. To address the limitations
mentioned above, we first generate h batches of centroids K (j)

=

[K (j)
1 ,K (j)

2 , . . . ,K (j)
h]

T
∈ Rh×n(j)pool×d

(j)
encode based on the input graph

in Pj(), and we then compute and aggregate the relationship
between every batch of centroids and the encoded graph for the
assignment matrix S (j).

3.5.3. Generation of centroids
The generation of centroids K (j) should satisfy the following

properties:

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

s
c
t

K

A
t
X

q

a
(
s

E

R
j
r
d
i

(

w
a
t

S

I

t
n
a

L

v
t
i
l

c
q
m
O
d
f
s
c
g

t
i
X

g

a
n

(

a
o
g
a

t

c

R
n
g
t
w

(1) Permutation invariance. The same graph can be addressed
using various adjacency matrices by permuting the se-
quences of the nodes. The centroids of the same graph
should be invariant to such changes.

(2) Input correlation. The generation of centroids is based on
an input graph. If the input graph changes, the centroids
should change accordingly to effectively capture global
features.

(3) Dimensional adjustability. The dimension of the centroid
matrix K (j) should be adjusted according to the dimensions
of the input and output coarsened graphs.

Therefore, we propose an ‘‘encoder–decoder’’ architecture to
compute the centroid matrix K (j). In general, the encoder en-
ures the property of permutation invariance and makes the
entroids adaptive to input graphs, whereas the decoder controls
he dimension of the output coarsened graph:

(j)
= Decoder

(
Encoder

(
X (j)

encode

))
. (10)

s shown in Eq. (10), an encoder is deployed over the input graph,
ransforming X (j)

encode ∈ Rn(j)encode×d
(j)
encode into X (j)

g ∈ R1×d(j)encode : Here,
(j)
g is the feature that incorporates the input information. Subse-

uently, a decoder is applied to map X (j)
g to K (j)

∈ R(h×n(j)pool)×d
(j)
encode ,

nd K (j) is then reshaped to Rh×n(j)pool×d
(j)
encode . Referring to Bai et al.

2019), the expressions for the encoder and decoder used in this
tudy are as follows:

ncoder : X (j)
g =

n∑
i=1

σ
(
(u(j)

i)
T
x(j)avgu

(j)
i

)
=

n∑
i=1

σ1

(
(u(j)

i)
T
σ2

(
(
1
n

n∑
j=1

u(j)
j)W (j)

avg
)
u(j)
i

)
,

Decoder : MLP,

(11)

where u(j)
i is the embedding of node i of the input graph in

the jth pooling layer, σ1 is the sigmoid function, σ2 is the tanh
activation function, and W (j)

avg ∈ Rd(j)encode×d
(j)
encode is the learnable

weight matrix. For the encoder, we used the attention mechanism
to guide the model to learn weights under specific tasks in order
to generate a graph-level representation X (j)

g for centroids. For
the decoder, we used a multilayer perceptron (MLP) to reshape
matrix K (j) to the required size.

3.5.4. Computation of assignment matrix
With centroid matrix K (j), we can compute the relationship

S (j)
p ∈ Rn(j)pool×n

(j)
encode (p = 1, 2, . . . , h) between centroids K (j)

p ∈

n(j)pool×d
(j)
encode (p = 1, 2, . . . , h) and X (j)

encode ∈ Rn(j)encode×d
(j)
encode in the

th pooling layer. We use the cosine similarity to evaluate the
elationship between input node embeddings and centroids, as
escribed in Eq. (12), followed by a row normalization deployed
n the resulting assignment matrix:

S (j′)
p)′ = cosine

(
K (j)

p ,X (j)
encode

)
,

S (j)
p = normalizerow

(
(S (j′)

p)′
)

,
(12)

here (S (j′)
p)′ ∈ Rnpool(j)×n

(j)
encode (p = 1, 2, . . . , h) denotes the

ssignment matrix before normalization. Finally, we aggregate
he information pertaining to the h relationship S (j)

p :

(j)
= Γφ

(
|h|
∥ S (j)

p

)
. (13)
p=1

485
n Eq. (13), we concatenate S (j)
p (p = 1, 2, . . . , h) and apply a

trainable weighted sum Γφ to the concatenated matrix, leading
to the final assignment matrix S (j).

3.6. Differentiable classifier

In this stage, the graph-level embedding vector xfinal is applied
to a specific predicted class number ŷ. A standard MLP is used to
ransform the dimension of the graph-level embedding into the
umber of classes. Then, we compare the predicted class number
gainst the ground-truth label. The loss function is as follows:

= −
1
N

N∑
i=1

M∑
j=1

yi,jlogŷi,j, (14)

where N is the set of training samples, M is the number of classes,
y is the true label, and ŷ is the value predicted by the model. The
whole algorithm framework is shown in Algorithm 1.

3.7. Time complexity analysis

In this subsection, we analyze the time complexity of MTPool,
and the real-time consumption is presented in Section 4.2.2.
Given a multivariate time series X = {x1, x2, . . . , xn} ∈ Rn×T ,
where T is the length of the time series and n is the number of
MTS variables.

First, for the graph structure learning module, we require
O(n× n× T) to compute the similarity matrix C among the MTS
ariables. To adaptively generate an adjacency matrix based on
he input features, we design a learnable matrix W adj , which
ntroduces O(n×n×n) time complexity. Thus, the graph structure
earning module requires O

(
n × n × (T + n)

)
. For the temporal

onvolution module, there are O(q × n × T) operations, where
denotes the number of CNN filters. Suppose that there are
GNN layers in the spatial–temporal modeling part, we need(
m× (n×n×T +n×T×dencode)

)
operations to combine spatial

ependencies and temporal patterns, where dencode is the final
eature dimension. Considering that q, m, and dencode are set to
mall numbers in our experiment, and T is often larger than n, we
an conclude that the total time complexity before the variational
raph pooling module is O(n× n× T).
For the variational graph pooling module, we first show the

ime complexity of a specific layer. Suppose that for the jth pool-
ng layer, Pj() can pool each encoded graph
(j)
encode ∈ Rn(j)encode×d

(j)
encode ,A(j)

encode ∈ Rn(j)encode×n
(j)
encode , to the coarsened

raph X (j)
pool ∈ Rn(j)pool×d

(j)
pool ,A(j)

pool ∈ Rn(j)pool×n
(j)
pool . Assume that we

lready obtained the assignment matrix S (j)
∈ Rn(j)pool×n

(j)
encode , we

eed O
(
(n(j)

pool × d(j)encode × (n(j)
encode + d(j)pool) + n(j)

encode × n(j)
pool ×

n(j)
encode+n

(j)
pool))

)
to generate X (j)

pool and A(j)
pool . Prior to obtaining the

ssignment matrix S (j), it is necessary to compute the h batches
f centroids K (j)

= [K (j)
1 ,K (j)

2 , . . . ,K (j)
h]

T
∈ Rh×n(j)pool×d

(j)
encode . To

enerate centroids, the encoder needs O(n(j)
encode×d(j)encode×d(j)encode),

nd the decoder takes O(h × n(j)
pool × d(j)encode). Then, computing

he relationship S (j)
p ∈ Rn(j)pool×n

(j)
encode (p = 1, 2, . . . , h) between

entroids K (j)
p ∈ Rn(j)pool×d

(j)
encode (p = 1, 2, . . . , h) and X (j)

encode ∈

n(j)encode×d
(j)
encode in the jth pooling layer requires O(h × n(j)

pool ×
(j)
encode× d(j)encode). From this analysis, we can see that the centroid-
enerating part that we designed has less time complexity than
he pooling operation after obtaining the assignment matrix S (j),
hich occupies a dominant position. Therefore, if we choose

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

p
w
t
v

4

b
u

Algorithm 1: MTPool algorithm framework.

Input : The multivariate time-series dataset of N MTS slices, X = {X1,X2, ...,XN } ∈ RN×n×T ;
Output: The corresponding predict labels, Ŷ = {ŷ1, ŷ2, ..., ŷN} ∈ RN

1 Ŷ = {}; // Record predict labels of MTS slices
2 for Xk in {X1,X2, ...,XN },Xk ∈ Rn×T do
3 for xi in Xk = {x1, x2, ..., xn}, xi ∈ RT do
4 for xj in Xk = {x1, x2, ..., xn}, xj ∈ RT do
5 Cij =

exp(−σ (distance(xi,xj)))∑n
p=0 exp(−σ (distance(xi,xp))

// Calculating the similarity matrix

6 end
7 end
8 A = σ (CWadj); // Calculating the adaptive adjacency matrix
9 A = Normalizerow(Threshold(A)); // Graph structure learning

10 XTC = Temporal_Convolution(Xk) ∈ Rn×d; // Temporal convolution
11 Z = Gm(Gm−1(...G1(XTC ,A)...)); // Spatial-temporal modeling
12 X (0)

encode = Z , A(0)
encode = A; // The input of the first pooling layer

13 for Pj in Pooling_Layers = {P1, P2, ..., Pl} do
14 K (j)

= [K (j)
1 ,K (j)

2 , ...,K (j)
h]

T
= decoder

(
encoder

(
X (j)
encode

))
, Encoder : X (j)

g =
∑n

i=1 σ1

(
(u(j)

i)Tσ2
(
(1n

∑n
j=1 u

(j)
j)W (j)

avg
)
u(j)
i

)
,

Decoder : MLP;
// Generating centroids

15 S (j)
= Γφ

(
|h|
∥

p=1
S (j)
p

)
, and S (j)

p = Normalizerow
(
Cosine

(
K (j)

p ,X (j)
encode

))
. p = 1, 2, ..., h;

// Computing assignment matrix

16 X (j)
pool = σ

(
S (j)X (j)

encodeW
(j)
pool

)
;

17 A(j)
pool = σ

(
S (j)A(j)

encode(S
(j))T

)
;

// Variational graph pooling
18 X (j+1)

encode = X (j)
pool,A

(j+1)
encode = A(j)

pool ; // Obtain the input of the next pooling layer
19 end
20 xfinal = X (j)

pool ;
21 ŷk = MLP(xfinal);
22 Ŷ ← ŷk;

// Add ŷk to Ŷ
23 end
24 return Ŷ
Table 1
Summary of the 10 UEA datasets used in experiments.

Name Train size Test size Num series Series length Classes

AF AtrialFibrillation 15 15 2 640 3
FM FingerMovements 316 100 28 50 2
HMD HandMovementDirection 160 74 10 400 4
HB Heartbeat 204 205 61 405 2
LIB Libras 180 180 2 45 15
MI MotorImagery 278 100 64 3000 2
NATO NATOPS 180 180 24 51 6
PD PenDigits 7494 3498 2 8 10
SRS2 SelfRegulationSCP2 200 180 7 1152 2
SWJ StandWalkJump 12 15 4 2500 3
4

4

U
d
r

d

small values of pooling layers l, dencode, and dpool, the time com-
lexity of the variational graph pooling module is O(n × n × n),
here n is the number of MTS variables. Considering that the
ime-series length T is usually larger than the number of MTS
ariables n, the total time complexity of MTPool is O(n× n× T).

. Experiments

In this section, we provide a comprehensive analysis of 10
enchmark datasets for MTS classification and compare the eval-
ation results of our model (MTPool) with other baselines.
 i

486
.1. Experiment settings

.1.1. Datasets
We use 10 publicly available benchmark datasets from the

EA MTS classification archive.2 The main characteristics of each
ataset are summarized in Table 1. The train and test sizes rep-
esent the number of MTS slices in the training and test datasets,

2 Datasets are available at http://timeseriesclassification.com. We excluded
ata with extremely long lengths, unequal lengths, high-dimensional sizes, and
n-balance splits.

http://timeseriesclassification.com

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

r
e
d
t

4

2
r

A

w
f

4

s
b

4

P
t

Fig. 2. The real time consumption of the Heartbeat dataset. We use the log-scale running time in Fig. 2(a) for the better comparison of different models.
R
7
T
f
w
f
t
l

espectively. Num series refers to the number of variables in
ach MTS slice; the series length refers to the length or feature
imension of each variable in each MTS slice. The class refers to
he number of types of MTS slices.

.1.2. Metrics
Similar to other MTS classification methods (Zhang et al.,

020), we used the classification accuracy as an evaluation met-
ic:

ccuracy =
TP + TN

TP + TN + FP + FN
, (15)

here TP , TN , FP , and FN denote the true positive, true negative,
alse positive, and false negative, respectively.

.1.3. Methods for comparison
We used the following implementations of the MTS clas-

ifiers, including the common distance-based classifiers, latest
ag-of-patterns model, and deep learning models

(1) ED, DTWI , DTWD, - with and without normalization
(norm) (Bagnall et al., 2018) are the common distance-
based models. 1-Nearest Neighbor with distance functions
includes Euclidean (ED), dimension-independent dynamic
time warping (DTWI), and dimension-dependent dynamic
time warping (DTWD).

(2) WEASEL+MUSE (Schäfer & Leser, 2017) represents the
Word ExtrAction for time SEries cLassification (WEASEL)
with a Multivariate Unsupervised Symbols and dErivatives
(MUSE). It is the most effective bag-of-pattern algorithm
for MTSC.

(3) HIVE-COTE (Bagnall, Flynn, Large, Lines, & Middlehurst,
2020) is a heterogeneous meta-ensemble for time-series
classification. This approach is a good baseline for assessing
bespoke MTSC.

(4) MLSTM-FCN (Karim et al., 2019) is a famous deep-learning
framework for MTSC. It utilizes an LSTM layer and a stacked
CNN layer alongside squeeze-and-excitation blocks to ob-
tain the representations.

(5) TapNet (Zhang et al., 2020) draws on the strengths of both
traditional and deep learning approaches. It also constructs
an LSTM layer and a stacked CNN layer, followed by an
attentional prototype network.

(6) MTPool is the MTPool framework obtained with our pro-
posed variational pooling and adaptive adjacency matrix.

.1.4. Training details
All of the networks were implemented using Pytorch 1.4.0 in

ython 3.6.2 and trained with 10000 epochs (computing infras-
ructure: Ubuntu 18.04 operating system, GPU NVIDIA GeForce
487
TX 2080 Ti with 8 GB GRAM and 32 GB of RAM). We used {3, 5,
} as the convolutional kernel size, and 10 as the channel number.
he threshold to make the adjacency matrix sparse was chosen
rom {0.05, 0.1, 0.2}, and the output dimension of the GNNs layer
as 128. For the pooling layers, the heads of centroids are chosen

rom {1, 2, 4}, the reduction factor is chosen from {2, 3, 6}, and
he number of nodes in the final pooling layer is 1. The initial
earning rate was 10−4, and the categorical cross-entropy loss and
Adam optimization were used to optimize the parameters of our
models. For each method, we performed 10 times and reported
the best accuracy.

4.2. Main results

4.2.1. Effectiveness
Table 2 shows the accuracy results obtained for the selected

10 UEA datasets of the MTPool and other MTS classifiers. ‘‘Avg.
Rank’’ in the table refers to the average ranking of different
models under all datasets, and ‘‘Wins/Ties’’ indicates the number
of datasets for which this model achieves the best performance.
For some approaches that ran out of memory, we referred to Ruiz,
Flynn, and Bagnall (2020) for the corresponding results. The best
performance in each dataset is shown in bold.

First, we can observe that MTPool outperforms several other
advanced MTS classification methods (such as TapNet or MLSTM-
FCN) on eight datasets. The ‘‘Avg. Rank’’ indicates the superiority
of MTPool over the existing state-of-the-art models (the second-
highest ranked model, MLSTM-FCN, has an average ranking of
4.40). We also found that methods that are based on deep learn-
ing proposed in recent years, such as TapNet and MLSTM-FCN,
perform better than methods based on nearest neighbors, proving
the effectiveness of deep learning in extracting MTS features.

More importantly, with different datasets, the number of vari-
ables and lengths span an extensive range. For instance, the num-
ber of variables ranged from 2 to 64, minimum length of the MTS
was eight, and maximum was 300. In the case of variable dataset
parameters, our framework maintains considerable competitive-
ness, thereby proving robustness to our model. More specifically,
for a large number of variables, MTPool can handle this by in-
creasing the pooling layers and making the graph pooling process
more hierarchical, thereby performing well. For instance, MTPool
achieved the best and second-best accuracies for MotorImagery
(64 variables) and Heartbeat (61 variables). This means that when
the number of variables is relatively large, the hierarchical pool-
ing framework that we provide can better capture the graph’s
structure and generate time-series embeddings with more robust
characterization capabilities. Notably, when the number of vari-
ables is relatively small, by reducing the number of pooling layers,
MTPool can also achieve good accuracy. MTPool achieves the
best accuracy on PenDigits (two variables), SelfRegulationSCP2

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

i

(
A
s

4

d
b
c
p
t
t
F
a

o
o
w
W
s
s

Table 2
Accuracy of the 11 algorithms on the default training/test datasets of 10 selected UEA MTSC archives. The best performance is shown in bold.
Methods/Datasets AF FM HMD HB LIB MI NATO PD SRS2 SWJ Avg. Rank Win/Ties

ED 0.267 0.519 0.279 0.620 0.833 0.510 0.850 0.973 0.483 0.333 7.50 0
DTWI 0.267 0.513 0.297 0.659 0.894 0.390 0.850 0.939 0.533 0.200 7.70 0
DTWD 0.267 0.529 0.231 0.717 0.872 0.500 0.883 0.977 0.539 0.200 6.50 0
ED (norm) 0.200 0.510 0.278 0.619 0.833 0.510 0.850 0.973 0.483 0.333 8.25 0
DTWI (norm) 0.267 0.520 0.297 0.658 0.894 0.390 0.850 0.939 0.533 0.200 7.60 0
DTWD (norm) 0.267 0.530 0.231 0.717 0.870 0.500 0.883 0.977 0.539 0.200 6.50 0
WEASEL+MUSE 0.400 0.550 0.365 0.727 0.894 0.500 0.870 0.948 0.460 0.267 5.65 0
HIVE-COTE 0.133 0.550 0.446 0.722 0.900 0.610 0.889 0.934 0.461 0.333 5.40 1
MLSTM-FCN 0.333 0.580 0.527 0.663 0.850 0.510 0.900 0.978 0.472 0.400 4.40 1
TapNet 0.200 0.470 0.338 0.751 0.878 0.590 0.939 0.980 0.550 0.133 5.25 1
MTPool 0.533 0.620 0.486 0.742 0.900 0.630 0.944 0.983 0.600 0.667 1.25 8
Fig. 3. Ablation study of pooling methods and adjacency matrix. The AF, MI, and SRS2 datasets were used, and different colors represent different methods. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
seven variables), and StandWalkJump (four variables) datasets.
more detailed analysis of MTPool is provided in the following

ubsection.

.2.2. Efficiency
We analyzed the efficiency of MTPool using the Heartbeat

ataset. As shown in Fig. 2, we ran the models on the heart-
eat test dataset 10 times and recorded the average real-time
onsumption. Although there are differences in the specific im-
lementation methods of different models and the complexi-
ies of models cannot be fully reflected using only the running
ime, we can draw the following conclusions. First, as shown in
ig. 2(a), the running times of machine-learning methods such
s WEASEL+MUSE and KNN-DTW are significantly higher than

those of recently proposed deep learning-based methods such
as MTPool, TapNet, and MLSTM-FCN. This shows the efficiency
of deep learning methods on MTSC tasks. From Fig. 2(b), we
can see that, although variational graph pooling is introduced
in MTPool, it does not contribute significantly to the running
time. The temporal convolution dominates the total running time,
which is consistent with our analysis of the time complexity.

4.3. Ablation study

We conducted an ablation study to validate the effectiveness
f key components that contribute to the improved outcomes
f MTPool. First, we substituted our variational pooling layers
ith other advanced pooling methods in the MTPool framework.
e then used a constant adjacency matrix for the initial graph

tructure instead of a adaptive adjacency matrix. The detailed
etting of each variant model is as follows.

• MTPool-M is the MTPool framework with MemPool
(Khasahmadi et al., 2020), which generates clustering cen-
troids without involving the input graphs.
488
Fig. 4. Class Prototype Inspection: visualize the 128-dimension multivariate
time-series embeddings learned for the PenDigits dataset in a two-dimensional
image using t-SNE.

• MTPool-D is the MTPool framework with DiffPool (Ying
et al., 2018), which trains two parallel GNNs to obtain node-
level embeddings and cluster assignments.
• MTPool-S is the MTPool framework with SAGPool (Lee et al.,

2019), which drops nodes from the input to pool the graph.
• MTPool-One is the MTPool framework with variational

pooling and an all-one adjacency matrix.
• MTPool-Corr is the MTPool framework with variational

pooling and a correlation coefficient adjacency matrix.
• MTPool is the MTPool framework with our proposed Varia-

tional Pooling and adaptive adjacency matrix.

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490
Fig. 5. Visualization of the graph pooling process in MTPool, using example graphs from Heartbeat dataset, which has 61 MTS variables, so the original graph has
61 nodes. The nodes in the second layer correspond to clusters in the first layer. We used the same color to represent nodes of the same cluster and dotted lines
to indicate different clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3 shows the comparison results that were obtained. The
important conclusions of these results are as follows:

(1) Different hierarchical graph pooling methods can be in-
corporated into our MTPool framework, and they exhibit
comparable or better performance than state-of-the-art
MTSC methods.

(2) Different adjacency matrices can be used in our MTPool
framework. However, the performance of the all-one ma-
trix was slightly worse than that of the correlation coef-
ficient matrix, and our adaptive matrix achieved the best
performance.

(3) Even if the three cutting-edge pooling methods (MemPool,
DiffPool, and SAGPool) and two adjacency matrices (all-
one and corr) have their own merits in the three selected
datasets, our proposed variational pooling can achieve the
best performance in all cases. This proves the effectiveness
of our well-designed pooling method and the adaptive
adjacency matrix.

4.4. Inspection of class prototype

This section visualizes the class prototype and its correspond-
ing time-series embedding to prove the effectiveness of our
well-trained time-series embedding. We used the t-SNE algo-
rithm (Maaten & Hinton, 2008) to visualize the 128-dimensional
time series embedded in the form of two-dimensional images.
We used different colors to distinguish between the different
categories. Fig. 4 shows the embeddings learned for the PenDigits
dataset, which contains 3498 test samples of 10 different types.
The following conclusions can be drawn based on the results
obtained:

(1) The distance between data samples from different cate-
gories is much greater than the distance between data
samples of the same type. Therefore, we can easily use
the learned multivariate time series to embed the time-
sequence classification.

(2) Low-dimensional time series embedding provides us with
a more interpretable perspective to understand classifiers’
problems. For example, categories two, six, and ten are
not divided into complete pieces. Instead, these three cat-
egories are divided into several sub-parts. Thus, it helps
to identify problems with the classifier and take further
measures, such as adding more training samples to these

three classes.

489
4.5. Case study: Visualizations

In this section, we visualize the graph pooling process using
the Heartbeat dataset. Fig. 5 shows a visualization of node as-
signments in the first and second layers on a graph constructed
from the Heartbeat dataset. We used the same color to represent
nodes of the same cluster. The cluster membership of each node
is determined by finding the argmax of its cluster assignment
probability. We also observed that even if the final goal is to
obtain graph-level embedding and the class to which MTS be-
longs, MTPool can still capture the hierarchical graph structure,
which helps us further reveal the dependencies among different
variables in MTS. Notably, the assignment matrix may not assign
nodes to specific clusters. The column corresponding to the un-
used cluster has a lower value for all nodes. For example, in this
case, the expected number of clusters we set in the first layer was
15 (greater than eight), but in fact, we obtained eight clusters.
This reminds us that even if we define the expected cluster
number in advance, MTPool automatically performs clustering
to obtain the best coarser results suitable for this graph. Such
characteristics can be adjusted for different inputs, and they thus
have a strong generalization ability.

5. Conclusion

In this paper, we propose the first graph-pooling-based frame-
work, MTPool, for MTS classification. The proposed framework
can explicitly model pairwise dependencies among MTS variables
and attain global embedding with strong interpretability and
expressiveness. The experimental results demonstrate that the
proposed model exhibits state-of-the-art performance compared
to existing models.

Future research is promising for exploring and designing more
powerful hierarchical graph pooling approaches that can be incor-
porated into our MTPool framework to attain a more expressive
and interpretable global representation for MTS.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Z. Duan, H. Xu, Y. Wang et al. Neural Networks 154 (2022) 481–490

A

D
N
a
c

R

B

B

B

B

C

D

D

F

G
H

I

S

S

S

S

S

V

W

W

W

W

X

X

X

X

Y

Y

Z

Z

Z

Z

cknowledgments

This work was supported by the National Key Research and
evelopment Program of China (No. 2019YFB2102600), the
ational Natural Science Foundation of China (No. 62002035),
nd the Natural Science Foundation of Chongqing, China (No.
stc2020jcyj-bshX0034).

eferences

agnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., et al. (2018).
The UEA multivariate time series classification archive, 2018. arXiv preprint
arXiv:1811.00075.

agnall, A. J., Flynn, M., Large, J., Lines, J., & Middlehurst, M. (2020). A tale of
two toolkits, report the third: on the usage and performance of HIVE-cote
v1. 0. CoRR.

ai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., & Wang, W. (2019). Simgnn: A
neural network approach to fast graph similarity computation. In Proceedings
of the twelfth ACM international conference on web search and data mining
(pp. 384–392).

aldán, F. J., & Benítez, J. M. (2019). Distributed fastshapelet transform: a
big data time series classification algorithm. Information Sciences, 496,
451–463.

hen, J., Ma, T., & Xiao, C. (2018). Fastgcn: fast learning with graph convolutional
networks via importance sampling. arXiv preprint arXiv:1801.10247.

efferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural
information processing systems, Vol. 29 (pp. 3844–3852). Curran Associates,
Inc..

uan, Z., Wang, Y., Ye, W., Feng, Z., Fan, Q., & Li, X. (2021). Connecting latent
ReLationships over heterogeneous attributed network for recommendation.
arXiv preprint arXiv:2103.05749.

eng, Z.-k., & Niu, W.-j. (2021). Hybrid artificial neural network and cooperation
search algorithm for nonlinear river flow time series forecasting in humid
and semi-humid regions. Knowledge-Based Systems, 211, Article 106580.

ao, H., & Ji, S. (2019). Graph u-nets. arXiv preprint arXiv:1905.05178.
amilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning

on large graphs. CoRR abs/1706.02216. arXiv:1706.02216.
wana, B. K., Frinken, V., & Uchida, S. (2020). DTW-NN: A novel neural network

for time series recognition using dynamic alignment between inputs and
weights. Knowledge-Based Systems, 188, Article 104971.

Kang, H., & Choi, S. (2014). Bayesian common spatial patterns for multi-subject
EEG classification. Neural Networks, 57, 39–50.

Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate LSTM-FCNs
for time series classification. Neural Networks, 116, 237–245.

Khasahmadi, A. H., Hassani, K., Moradi, P., Lee, L., & Morris, Q. (2020).
Memory-based graph networks. In International conference on learning
representations.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. CoRR abs/1609.02907. arXiv:1609.02907.

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph pooling. arXiv preprint
arXiv:1904.08082.

Li, J., Yang, B., Li, H., Wang, Y., Qi, C., & Liu, Y. (2021). DTDR–ALSTM:
Extracting dynamic time-delays to reconstruct multivariate data for im-
proving attention-based LSTM industrial time series prediction models.
Knowledge-Based Systems, 211, Article 106508.

Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., et al. (2020). Deep learning for
community detection: progress, challenges and opportunities. arXiv preprint
arXiv:2005.08225.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., et al. (2021). A
comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering.

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov), 2579–2605.

Mori, U., Mendiburu, A., Miranda, I. M., & Lozano, J. A. (2019). Early classification
of time series using multi-objective optimization techniques. Information
Sciences, 492, 204–218.
490
Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G.,
et al. (2019). Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33
(pp. 4602–4609).

Pei, W., Dibeklioğlu, H., Tax, D. M., & van der Maaten, L. (2017). Multivari-
ate time-series classification using the hidden-unit logistic model. IEEE
Transactions on Neural Networks and Learning Systems, 29(4), 920–931.

Ranjan, E., Sanyal, S., & Talukdar, P. P. (2020). ASAP: Adaptive structure
aware pooling for learning hierarchical graph representations. In AAAI
(pp. 5470–5477).

Ruiz, A. P., Flynn, M., & Bagnall, A. (2020). Benchmarking multivariate time series
classification algorithms. arXiv preprint arXiv:2007.13156.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1),
61–80.

chäfer, P., & Leser, U. (2017). Multivariate time series classification with weasel+
MUSE. arXiv preprint arXiv:1711.11343.

eto, S., Zhang, W., & Zhou, Y. (2015). Multivariate time series classification using
dynamic time warping template selection for human activity recognition. In
2015 IEEE symposium series on computational intelligence (pp. 1399–1406).
IEEE.

hi, Z., Bai, Y., Jin, X., Wang, X., Su, T., & Kong, J. (2021). Parallel deep
prediction with covariance intersection fusion on non-stationary time series.
Knowledge-Based Systems, 211, Article 106523.

u, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C., et al. (2021). A comprehensive
survey on community detection with deep learning. arXiv preprint arXiv:
2105.12584.

un, C., Chen, C., Li, W., Fan, J., & Chen, W. (2019). A hierarchical neural
network for sleep stage classification based on comprehensive feature
learning and multi-flow sequence learning. IEEE Journal of Biomedical and
Health Informatics, 24(5), 1351–1366.

eličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017).
Graph attention networks. arXiv preprint arXiv:1710.10903.

ang, Y., Duan, Z., Huang, Y., Xu, H., Feng, J., & Ren, A. (2020). MTHetGNN:
A heterogeneous graph embedding framework for multivariate time series
forecasting. arXiv e-Prints, arXiv–2008.

ang, Y., Duan, Z., Liao, B., Wu, F., & Zhuang, Y. (2019). Heterogeneous attributed
network embedding with graph convolutional networks. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 33 (pp. 10061–10062).

ang, Z., Yan, W., & Oates, T. (2017). Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 international joint
conference on neural networks (IJCNN) (pp. 1578–1585). IEEE.

u, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020). Connecting the
dots: Multivariate time series forecasting with graph neural networks. arXiv
preprint arXiv:2005.11650.

u, H., Chen, R., Bai, Y., Duan, Z., Feng, J., Sun, Y., et al. (2020). CoSimGNN:
Towards large-scale graph similarity computation. arXiv preprint arXiv:2005.
07115.

u, H., Duan, Z., Wang, Y., Feng, J., Chen, R., Zhang, Q., et al. (2021). Graph
partitioning and graph neural network based hierarchical graph matching
for graph similarity computation. Neurocomputing, 439, 348–362.

u, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural
networks? ArXiv arXiv:1810.00826.

u, H., Huang, Y., Duan, Z., Wang, X., Feng, J., & Song, P. (2020). Multivariate time
series forecasting with transfer entropy graph. arXiv e-Prints, arXiv–2005.

ing, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018).
Hierarchical graph representation learning with differentiable pooling. In
Advances in neural information processing systems (pp. 4800–4810).

u, Z., & Lee, M. (2015). Real-time human action classification using a dynamic
neural model. Neural Networks, 69, 29–43.

hang, X., Gao, Y., Lin, J., & Lu, C.-T. (2020). TapNet: Multivariate time series
classification with attentional prototypical network. In AAAI (pp. 6845–6852).

hou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., et al. (2020). Graph neural
networks: A review of methods and applications. AI Open, 1, 57–81.

hou, Y., Duan, Z., Xu, H., Feng, J., Ren, A., Wang, Y., et al. (2020). Parallel
extraction of long-term trends and short-term fluctuation framework for
multivariate time series forecasting. arXiv preprint arXiv:2008.07730.

hou, K., Wang, W., Huang, L., & Liu, B. (2021). Comparative study on the time
series forecasting of web traffic based on statistical model and generative
adversarial model. Knowledge-Based Systems, 213, Article 106467.

http://arxiv.org/abs/1811.00075
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb2
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb2
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb2
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb2
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb2
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb4
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb4
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb4
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb4
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb4
http://arxiv.org/abs/1801.10247
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb6
http://arxiv.org/abs/2103.05749
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb8
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb8
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb8
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb8
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb8
http://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb11
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb11
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb11
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb11
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb11
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb12
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb12
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb12
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb13
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb13
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb13
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb14
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb14
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb14
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb14
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb14
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1904.08082
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb17
http://arxiv.org/abs/2005.08225
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb19
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb19
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb19
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb19
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb19
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb20
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb20
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb20
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb21
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb21
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb21
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb21
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb21
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb23
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb23
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb23
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb23
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb23
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb24
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb24
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb24
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb24
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb24
http://arxiv.org/abs/2007.13156
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb26
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb26
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb26
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb26
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb26
http://arxiv.org/abs/1711.11343
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb28
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb29
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb29
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb29
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb29
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb29
http://arxiv.org/abs/2105.12584
http://arxiv.org/abs/2105.12584
http://arxiv.org/abs/2105.12584
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb31
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb33
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb33
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb33
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb33
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb33
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb35
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb35
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb35
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb35
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb35
http://arxiv.org/abs/2005.11650
http://arxiv.org/abs/2005.07115
http://arxiv.org/abs/2005.07115
http://arxiv.org/abs/2005.07115
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb38
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb38
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb38
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb38
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb38
http://arxiv.org/abs/1810.00826
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb40
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb40
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb40
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb41
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb41
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb41
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb41
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb41
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb42
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb42
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb42
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb43
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb43
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb43
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb44
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb44
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb44
http://arxiv.org/abs/2008.07730
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb46
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb46
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb46
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb46
http://refhub.elsevier.com/S0893-6080(22)00297-0/sb46

	Multivariate time-series classification with hierarchical variational graph pooling
	Introduction
	Related work
	Multivariate time-series classification
	Graph neural networks
	Graph pooling

	Framework
	Problem formulation
	Graph structure learning
	Temporal convolution
	Spatial–temporal modeling
	Variational graph pooling
	Overall transformation
	Computation of assignment matrix
	Generation of centroids
	Computation of assignment matrix

	Differentiable classifier
	Time complexity analysis

	Experiments
	Experiment settings
	Datasets
	Metrics
	Methods for comparison
	Training details

	Main results
	Effectiveness
	Efficiency

	Ablation study
	Inspection of class prototype
	Case study: Visualizations

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

