TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 13/18 ppl41-149
DOI: 10.26599/TST.2021.9010081
Volume 28, Number 1, February 2023

Multivariate Time Series Forecasting with Transfer Entropy Graph

Ziheng Duan, Haoyan Xu, Yida Huang, Jie Feng, and Yueyang Wang*

Abstract: Multivariate Time Series (MTS) forecasting is an essential problem in many fields. Accurate forecasting
results can effectively help in making decisions. To date, many MTS forecasting methods have been proposed
and widely applied. However, these methods assume that the predicted value of a single variable is affected by all
other variables, ignoring the causal relationship among variables. To address the above issue, we propose a novel
end-to-end deep learning model, termed graph neural network with neural Granger causality, namely CauGNN, in
this paper. To characterize the causal information among variables, we introduce the neural Granger causality graph
in our model. Each variable is regarded as a graph node, and each edge represents the casual relationship between
variables. In addition, convolutional neural network filters with different perception scales are used for time series
feature extraction, to generate the feature of each node. Finally, the graph neural network is adopted to tackle the
forecasting problem of the graph structure generated by the MTS. Three benchmark datasets from the real world are

used to evaluate the proposed CauGNN, and comprehensive experiments show that the proposed method achieves

state-of-the-art results in the MTS forecasting task.
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1 Introduction

In the real world, Multivariate Time Series (MTS)
data are common in various fields!"?, such as the
sensor data in the Internet of things, traffic flows on
highways, and the prices collected from stock markets
(e.g., metal price)> . In recent years, many time series
forecasting methods have been widely studied and
applied®!. For univariate situations, the AutoRegressive
Integrated Moving Average model (ARIMA)!®! is one of
the most classic forecasting methods. However, due to
the computational complexity, ARIMA is not suitable for
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multivariate situations. VAR®-8] method is an extended
multivariate version of the AR model, which is widely
used in MTS forecasting tasks due to its simplicity.
However, it cannot handle the nonlinear relationships
that exist among variables, which consequently reduces
its forecasting accuracy.

In addition to traditional statistical methods, deep
learning methods are also applied for the MTS
forecasting problem. The Recurrent Neural Network
(RNN)'T and its two improved versions, namely
the Long Short-Term Memory (LSTM)!'!l and the
Gated Recurrent Unit (GRU)!'?!, realize the extraction
of time series dynamic information through the
memory mechanism. LSTNet!!*! encodes short-term
local information into low-dimensional vectors using 1D
convolutional neural networks, and decodes the vectors
through an RNN. However, the existing deep learning
methods cannot model the pairwise causal dependencies
among MTS variables explicitly. For example, the
future traffic flow of a specific street is easier to be
influenced and predicted by the traffic information of
the neighboring area. In contrast, the knowledge of
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the area farther away is relatively useless!'*. If such
a prior causal information can be considered, it is
more conducive to the interaction among variables with
causality.

Granger causality analysis (G-causality)!'> 10! is
one of the most famous studies on the quantitative
characterization of time series causality. However, as
a linear model, G-causality cannot handle nonlinear
relationships well. Thus, Transfer Entropy (TE)!”]
is proposed for causal analysis, which can deal
with nonlinear cases. TE has been widely used in
economic!'®!, biological'!'”!, and industrial®®! fields.

To further address the above limitation, we propose
a novel framework, called Graph Neural Network with
Causality, namely CauGNN, for MTS forecasting tasks.
After calculating the pairwise TE among variables,
the TE matrix can be obtained, which is regarded
as the adjacency matrix of the graph structure, and
each variable in this matrix corresponds to one node
of this graph. In addition, CNN filters with different
perception scales are used for time series feature
extraction to generate the feature of each node. Finally,
the Graph Neural Network (GNN) is adopted to tackle
the embedding and forecasting problem of the graph
generated by MTS. Our major contributions are as
follows:

e To the best of the authors’ knowledge, we first
propose an end-to-end deep learning framework that
considers MTS as a graph structure with causality.

e We use TE to extract the causality among the
time series and construct the TE graph as a priori
information to guide the forecasting task.

e We conduct extensive experiments on MTS
benchmark datasets, and results have proved that
CauGNN outperforms the state-of-the-art models.

2 Preliminary

2.1 Neural Granger causality

Neural Granger is an improved Granger causality
inference method. It inherits the core idea of Granger
causality, i.e., if the addition of historical information of
variable i significantly improves the prediction accuracy
of another variable j, then variable i is the cause of
variable j, and vice versa. The difference is that the
traditional linear Granger method uses the AR model
for prediction. In contrast, the neural Granger uses
deep learning and regularization to account for the
nonlinearity and avoid the computational complexity

caused by the pairwise calculation.

The neural Granger network structure consists of
two parts: (1) the variable selection module and (2)
prediction module. The variable selection module is a
fully connected layer that directly accepts the historical
time series as input. The neural Granger method selects
key variables by adding group Lasso regularization
constraints to the weight parameters of this layer. Group
Lasso is an evolved version of Lasso regularization,
which can divide constrained parameters into multiple
subgroups. If a specific group is insignificant for
prediction, the entire group of parameters will be
assigned a zero value. In the variable selection module,
the weights connected to an input variable are set at
different time points as a group. If the weights of the
subgroup are not zero under the regularization constraint,
it means that the variable has a significant effect on
the prediction and is thus determined as the cause of
the variable to be predicted. The second part of the
neural Granger is the prediction layer. This part is
not significantly different from the general prediction
method. Networks, such as the multilayer perceptron
or LSTM, can be used. For each variable x;, a neural
Granger network is established to find its cause variables.
The objective function of the network is as follows:

T
mui/n t;((x” —&i (x(t—l):(z—K)))2+
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where x;; is the true value of the variable x; at time ¢,
X(;—1):(—K) 1S the value of all variables in K lags, g; ()
is the function that specifies how lags from 1 to K affect
the future evolution of the series, T is the observed
time points, p is the number of variables, A is the
regularization coefficient, W:u, e, W:le represents all
the weight parameters connected with the j-th variable
in the variable selection module, and |||| is the F-norm.

2.2 GNN

The concept of GNN was first proposed in Ref. [21],
which extended existing neural networks for processing
the data represented in graph domains. A wide variety of
GNN models have been proposed in recent years!?> 23
Most of these approaches fit within the framework of
“neural message passing” proposed by Gilmer et al.**],
In the message-passing framework, a GNN is viewed as
a message-passing algorithm where node representations
are iteratively computed from the features of their
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neighbor nodes using a differentiable aggregation
function!>>-27],

A separate line of work focuses on generalizing
convolutions to graphs. The Graph Convolutional
Networks (GCN)?8! could be regarded as an
approximation of the spectral-domain convolution of
graph signals. GCN convolutional operation could
also be viewed as the sampling and aggregating of the
neighborhood information, such as GraphSAGE"
and FastGCN[PY | enabling training in batches while
sacrificing some time efficiency. Coming right after
GCN, the Graph Isomorphism Network (GIN)P!! and
k-GNNs/*2l are developed, enabling more complex
forms of aggregation. The Graph Attention Network
(GAT)3 is another nontrivial direction to go under the
topic of GNN. It incorporates attention into propagation,
attending over the neighbors via self-attention. Recently,
researchers have also applied GNN to the time series
forecasting problem. For example, a Correlational
Graph Attention-based Long Short-Term Memory
network (CGA-LSTM) proposed in Ref. [34] shows
comparable performance. This further reminds us of the
superiority of the graph method in MTS forecasting.

3 Methodology

3.1 Problem formulation

Given a matrix consisting of multiple observed time
series S, = [s1,82,...,8¢], where s5; € R"(i =
1,...,n) and n is the number of variables, the goal
of MTS forecasting is to predict s;4, where & is the
horizon ahead of the current time stamp.

3.2 Causality graph structure with TE

TE is a measure of causality based on information theory,
which was proposed by Schreiber in 200013, Given a
variable X € R’ , its information entropy is defined as
HX)=—)_ p(x)log, p(x) )
where x denotes all possible values of the variable,
and p(x) is the corresponding probability. Information
entropy is used to measure the amount of information. A
larger H(X) indicates that the variable X contains more
information. Conditional entropy is another information

theory concept, given two variables X and Y, which is
defined as

HX|Y) == p(x.y)log, p(x]y) (3)
where conditional entropy H(X|Y) represents the

information amount of X under the condition that the
variable Y is known. The TE of Y to X is defined as

k 1 k 1
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where x; and y; represent their values at time f.
k) _ dy® =
x; =[x, Xe—1, 0 X1l and y; = [ye, yeo1, -
Vi—i+1]- It can be found that TE is an increase in
the information amount of the variable X when Y
changes from being unknown to known. TE indicates
the direction of information flow, thus characterizing
causality. It is worth noting that TE is asymmetric, so the
causal relationship between X and Y is usually further
indicated in the following way:

Txy = Tx—y — Ty—x (5)
When Ty y is greater than 0, it means that X is the cause
of Y. Otherwise X is the consequence of Y. In this

paper, we use neural Granger to characterize the causal
relationship among variables. The causality matrix A
of the MTS §,, can be formulated with the element a;;
corresponding to the i -th row and j -th column as

Tvi IR
0, otherwise

T, v >C;

(6)

aijj =

where v; and v; are the i-th and j-th rows of S, i.e., i-th
and j-th variables of S, ¢ is the threshold to determine
whether the causality is significant. A can be regarded
as the adjacency matrix of the MTS graph structure.

3.3 Feature extraction of multiple receptive fields

Time series is a special kind of data. When analyzing
time series, it is necessary to consider not only its
numerical value but also its trend over time. In addition,
time series from the real world often has multiple
meaningful periods. For example, the traffic flow of
a certain street shows a similar trend every day and
meaningful rules can be observed in the unit of a
week. Therefore, it is reasonable to extract the features
of time series in units of multiple certain periods. In
this paper, we use multiple CNN filters with different
receptive fields, namely kernel sizes, to extract features
at multiple time scales. Given an input time series v
and g CNN filters, denoted as W;, different convolution
kernel sizes (1 x k;)(i = 1,2,...,q) are separately
generated and the features h are extracted as follows:
hi = ReLUW; xv+b;),h =[h ®Dh, d--- @hq].
“x” denotes the convolution operation, “@” represents
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the concatenate operation, and Re LU() is a nonlinear
activation function, Re LU(-) = max(0, -).

3.4 Node embedding based on causality matrix

After feature extraction, the input MTS is converted into
a feature matrix H € R"*4 , where d is the number of
features after the calculation introduced in Section 3.3.
H can be regarded as a feature matrix of a graph with
n nodes. The adjacency of nodes in the graph structure
is determined by the causality matrix A. For such a
graph structure, GNNs can be directly applied for the
embedding of nodes. Inspired by the k-GNNs model3?),
we propose the CauGNN model and use the following
propagation mechanism for calculating the forward-pass
update of a node denoted by v;:

Y=o [ nPWD + S WPwd @)
JEN()
where o denotes the activation function (e.g., sigmoid
function), W&l) and Wg) are parameter matrices,
hl(l) is the hiden state of node i in the /-th layer,
and N(i) denotes the neighbors of node i. k-GNNs
only perform information fusion between a certain
node and its neighbors, ignoring the information of
other nonneighbor nodes. This design highlights the
relationship among variables, which can effectively
avoid the information redundancy brought by high
dimensions. By adding a priori causal information
obtained by TE, the model does not need to determine
the key variables for forecasting by itself. In this paper,
the output dimension of the last GNN layer is 1, which
is used as the prediction result.
Overall, we use f;-norm loss to measure the

prediction of ;.5 and optimize the model via the Adam
algorithm!®®!, The schematic diagram of CauGNN is
shown in Fig. 1.

4 Experiment

In this section, we conduct extensive experiments on
three benchmark datasets for MTS forecasting tasks and
compare the results of the proposed CauGNN model
with the other six baselines. All the data and experiment
codes are available online .

4.1 Data

We use three publicly available benchmark datasets.

o Exchange-Rate*: Exchange rates of eight foreign
countries collected from 1990 to 2016, collected per day.

e Energy®’!: Measurements of 26 different
quantities related to the appliances’ energy consumption
in a single house for 4.5 months, collected per 10
minutes.

e Nasdaq®®: Stock prices selected as the
multivariable time series for 82 corporations, collected
per minute.

4.2 Methods for comparison

The methods in the comparative evaluation are as
follows:

e VARI®®! gstands for the well-known vector
regression model, which has proven to be a useful
machine learning method for MTS forecasting.

e CNN-ARPY stands for the classical CNN. We use
multilayer CNN with AR components to perform MTS

T https://github.com/RRRussell/CauGNN.
1 https:/github.com/laiguokun/multivariate-time-series-data.

Transfer entropy Graph
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Fig. 1 Schematic diagram of CauGNN. A multivariate time series consists of multiple univariate time series. CauGNN maps
a multivariate time series to a graph, and each univariate time series (variable) is mapped to a node. The causality matrix is
calculated to model the adjacency information of nodes, while the convolutional layer is used to catch node features. The node
feature matrix and adjacency matrix are then fed into the GNN to get forecasts.
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forecasting tasks.

e RNN-GRU!"?! is the RNN using the GRU cell with
AR components.

e MultiHead Attention!*”! stands for multihead
attention components in the famous Transformer model,
where the multihead mechanism runs through the scaled
dot-product attention multiple times in parallel.

e LSTNet!'*! is a famous MTS forecasting
framework that shows great performance by modeling
long- and short-term temporal patterns of MTS data.

e MLCNN™! is a novel multi-task deep learning
framework that adopts the idea of fusing forecasting
information of different future times.

e CauGNN stands for our proposed GNN with TE.
We apply the multilayer CNN and k-GNNss to perform
MTS forecasting tasks.

e CauGIN stands for the proposed graph
isomorphism network with TE, where k-GNNs
layers are replaced by GIN layers.

e CauGNN-nCau removes the TE matrix and uses
an all-one adjacency matrix instead.

e CauGNN-nCNN removes the CNN component
and uses the input time series data as node features.

4.3 Metrics

We apply three conventional evaluation metrics to
evaluate the performance of different models for MTS
prediction. The Mean Absolute Error (MAE), Relative
Absolute Error (RAE), and empirical correlation
coefficient (CORR) are calculated as follows:

1 n
MAE = ;Z|Pi—ai|,

i=1

n
2. lpi —ail
RAE="L

Y la—ail
i=1

n - —_

2 (pi — p)ai —a)

CORR = =1 8)

n n
> (pi—p)? | X (ai—a)
i=1 i=1
where a is the actual target and p is the predict target.
For MAE and RAE metrics, a lower value is better;

while a higher value is better for CORR metric.
4.4 Experiment details

We conduct a grid search for the tunable hyper-
parameters of each method in all datasets. Specifically,
we set the same grid search range of input window

size for each method from {2°,21,...,2°} if applied.
We vary hyper-parameters for each baseline method
to achieve their best performance on this task. For
RNN-GRU and LSTNet, the hidden dimension of
the recurrent and convolutional layer is chosen from
{10, 20,...,100}. For LSTNet, the skip-length is
chosen from {0, 12, ..., 48}. For MLCNN, the hidden
dimension of the recurrent and convolutional layer is
chosen from {10, 25, 50, 100}. We adopt the dropout
layer after each layer, and set the dropout rate from
{0.1,0.2}. We calculate the TE matrix based on the
training and validation data. For CauGNN, CauGIN,
CauGNN-nCau, and CauGNN-nCNN, we all set the size
of the three convolutional kernels to be {3, 5, 7}, and the
number of channels of each kernel is 12 in all our models.
The hidden dimension of the k-GNNs layer is chosen
from {10, 20, ..., 100}. For CauGIN, the hidden size is
chosen from {10, 20, ..., 100}. For the hyperparameter
¢, which is the threshold to determine the significance
of the causality, we search it in the range of [0, 0.1],
and choose it to be 0.005. The Adam algorithm is used
to optimize the parameters of the proposed model. For
more details, please refer to the attached code.

4.5 Main results

Table 1 summarizes the evaluation results of all methods
on the three benchmark datasets with three metrics.
Following the test settings of Ref. [13], we use each
model for the time series predicting on the future
moment {t + 5,¢ + 10,¢ + 15}; thus, we set horizon=
{5, 10, 15}, which means the horizon is set from 5 to 15
days for forecasting over the exchange-rate data, from
50 to 150 minutes over the energy data, and from 5 to 15
minutes over the Nasdaq data. The best results for each
metric on each dataset are set as bold in Table 1. We save
the model that has the best performance on the validation
set based on the RAE or MAE metric after training 1000
epochs for each method. Then we use the model to test
and record the results. The results show that the proposed
CauGNN model outperforms most of the baselines in
most cases, indicating the effectiveness of the proposed
model on MTS predicting tasks adopting the idea of
using causality as the guideline for forecasting. On the
other side, we observe the results of the VAR model
on the Nasdaq dataset are far worse than those of other
methods in some cases, partly because VAR is insensitive
to the scale of input data, lowering its performance.
MLCNN shows impressive results because it can
fuse near and distant future visions, and LSTNet shows
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Table 1 MTS forecasting results measured by MAE/RAE/CORR score over three datasets.
Method

Dataset Horizon VAR CNN-AR RNN-GRU
MAE RAE CORR MAE RAE CORR MAE RAE CORR
5 days 0.0065 0.0188  0.9619 0.0063  0.0182  0.9638 0.0066  0.0192  0.9630
Exchange-rate 10days  0.0093  0.0270  0.9470 0.0085  0.0249  0.9490 0.0092  0.0268  0.9491
15days  0.0116  0.0339  0.9318 0.0106  0.0303  0.9372 0.0122  0.0355 0.9323
50 min 3.1628  0.0545 0.9106 2.4286  0.0419 09159 27306  0.0471  0.9167
Energy 100 min  4.2154  0.0727 0.8482 29499  0.0509 0.8618 3.0590  0.0528  0.8624
150 min ~ 5.1539  0.0889  0.7919 35719  0.0616  0.8150 37150  0.0641  0.8106
5 min 0.1706 ~ 0.0011  0.9911 0.2110  0.0014  0.9920 0.2245  0.0015  0.9930

Nasdaq 10 min 0.2667 0.0018  0.9273 0.2650  0.0017  0.9919 0.2313  0.0015  0.9901
15 min 0.3909  0.0026  0.5528 0.2663  0.0017  0.9860 0.2700  0.0018  0.9877
Method
Dataset Horizon MultiHead Attention LSTNet MLCNN

MAE RAE CORR MAE RAE CORR MAE RAE CORR

5 days 0.0078  0.0227  0.9630 0.0063  0.0184  0.9639 0.0065 0.0189  0.9693

Exchange-rate  10days  0.0101  0.0294  0.9500 0.0085  0.0247  0.9490 0.0094  0.0274  0.9559
15days  0.0119 0.0347  0.9376 0.0107  0.0311  0.9373 0.0107  0.0312  0.9511

50 min 2.6155 0.0451 09178 22813  0.0393  0.9190 24529 0.0423  0.9212

Energy 100 min ~ 3.2763  0.0565  0.8574 3.0951 0.0534  0.8640 3.4381 0.0593  0.8603
150 min  3.8457  0.0663  0.8106 3.4979  0.0603  0.8216 3.7557  0.0648  0.8121

5 min 0.2218  0.0014  0.9945 0.1708  0.0011  0.9940 0.1301  0.0009  0.9965

Nasdaq 10 min 0.2446  0.0017  0.9915 0.2511 0.0016  0.9902 0.2054  0.0013  0.9931
15 min 0.3177 0.0027  0.9857 0.2603  0.0017  0.9872 0.2375 0.0016  0.9898
Method
Dataset Horizon CauGNN-nCau CauGNN-nCNN

MAE RAE CORR MAE RAE CORR

5 days 0.0076  0.0221 0.966 0.0074  0.0240  0.9634

Exchange-rate 10days  0.0093  0.0290  0.9531 0.0096  0.0350 0.9518
15days  0.0113  0.0315  0.9425 0.0118  0.0325  0.9398

50 min 2.1753  0.0369  0.9210 22346  0.0575 0.9196

Energy 100 min  2.8731  0.0475  0.8587 2.7488  0.0574  0.8608
150 min ~ 3.4122  0.0588  0.8167 3.5229  0.0673  0.8121

5 min 0.1601  0.0010  0.9942 0.1884  0.0012  0.9937

Nasdaq 10 min 0.2174  0.0014  0.9907 0.4454  0.0029  0.9909
15 min 0.2490 0.0016  0.9879 0.3342  0.0022  0.9856
Method
Dataset Horizon CauGNN CauGIN

MAE RAE CORR MAE RAE CORR

5 days 0.0060 0.0176  0.9694 0.0065  0.0188  0.9690

Exchange-rate 10days  0.0083  0.0243  0.9548 0.0089  0.0259  0.9551
15days  0.0104  0.0302  0.9438 0.0108  0.0315  0.9441

50 min  2.0454  0.0358  0.9267 2.1768  0.0375  0.9204

Energy 100 min ~ 2.7242  0.0470  0.8673 2.8097 0.0485  0.8615
150 min ~ 3.3232  0.0573  0.8221 33572 0.0579  0.8131

5 min 0.1549  0.0010  0.9951 0.1174  0.0008  0.9968

Nasdaq 10 min  0.1897  0.0012  0.9922 0.1664  0.0011  0.9937
15min  0.2358  0.0015  0.9887 0.2043  0.0013  0.9907

comparable results by modeling periodic dependency and analyze the topology composed of variables and
patterns. The proposed CauGNN uses the TE matrix relationships through the graph network. Thus, it can
to collect the internal relationship between variables break through these restrictions and perform well on
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general datasets.

We also fine-tune other deep learning baseline models
and choose suitable hyperparameters to achieve their best
performance. For the MulitiHead Attention, LSTNet,
and MLCNN, we set hidCNN, hidRNN, hidSkip, and
window size as 50, 50, 5, and 128, respectively. For
RNN-GRU, we set hidRNN as 50 and highway window
as 24. As for our model CauGNN, we set hidCNN,
hidGNN1, hidGNN?2, and window size as 12, 30, 10, and
32, respectively. Compared with these baseline models,
our proposed CauGNN model can share the same
hyperparameters among various datasets and situations
with robust performance, as revealed from the results.

4.6 Variant comparison

Our proposed framework has strong universality and
compatibility. We replace the k-GNNs layer with the
GIN layer, which also well preserves the distinctness of
inputs. As shown in Table 1, the GIN layer fits into our
model well and CauGIN has a similar performance with
CauGNN.

For the ablation study, we also replace the TE matrix
with an all-one matrix in CauGNN-nCau, assuming the
value to be predicted of a single variable is related to all
other variables. Thus, a completed graph is fed into the
GNN layers. The experiment results show that CauGNN
outperforms CauGNN-nCau, indicating the significant
role that the TE matrix plays in the CauGNN model. On
the other hand, we conduct experiments using the
CauGNN-nCNN model, in which the CNN component
is removed. The input time series data without feature
extraction are fed into the GNN layer instead of the
node features extracted from the CNN layer. Experiment
results show that CauGNN outperforms CauGNN-
nCNN, suggesting the significant role that the CNN
component plays in the CauGNN model.

To test the parameter sensitivity of our model, we

evaluate how the hidden size of the GNN component
can affect the results. We report the MAE, RAE, and
CORR metrics on the exchange-rate dataset. As seen in
Fig. 2, while ranging the hidden size of GNN layers
from {10, 20, ..., 100}, the model performance is steady,
being relatively insensitive to the hidden dimension
parameter.

To prove the superiority of multiple CNN filters,
we also did an ablation study on the exchange-rate
dataset when the horizon is 5 days. As shown in Fig. 3,
CauGNN-RF, CauGNN-1CNN, and CauGNN represent
the direct use of the raw feature (original data) as the
input of the node embedding model, using one CNN
filter (here, we set kernel size to 3), and the complete
model CauGNN is constructed with three CNN filters.
We can find that CauGNN-RF has the worst performance,
indicating that the direct use of raw features will
introduce too much noise, which is not conducive
to the subsequent learning of the model. Meanwhile,
CauGNN has the best performance, indicating that
stacking multiple CNN filters can better capture multiple
inherent time series period characteristics and make
more accurate predictions.

5 Conclusion

In this paper, we propose a novel deep learning
framework (namely CauGNN) for MTS forecasting.
Using CNN with multiple receiving fields, our model
introduces a priori causal information with TE features
and uses a GNN for feature extraction, which effectively
improves the results in the MTS forecasting. With in-
depth theoretical analysis and experimental verification,
we confirm that CauGNN successfully captures the
causal relationship among variables and selects key
variables for accurate forecasting using a GNN.
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