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Abstract

Dynamic compartmentalization of eukaryotic DNA into active and repressed states enables diverse transcriptional programs to arise
from a single genetic blueprint, whereas its dysregulation can be strongly linked to a broad spectrum of diseases. While single-cell Hi-C
experiments allow for chromosome conformation profiling across many cells, they are still expensive and not widely available for most
labs. Here, we propose an alternate approach, scENCORE, to computationally reconstruct chromatin compartments from the more
affordable and widely accessible single-cell epigenetic data. First, scENCORE constructs a long-range epigenetic correlation graph to
mimic chromatin interaction frequencies, where nodes and edges represent genome bins and their correlations. Then, it learns the node
embeddings to cluster genome regions into A/B compartments and aligns different graphs to quantify chromatin conformation changes
across conditions. Benchmarking using cell-type-matched Hi-C experiments demonstrates that scENCORE can robustly reconstruct
A/B compartments in a cell-type-specific manner. Furthermore, our chromatin confirmation switching studies highlight substantial
compartment-switching events that may introduce substantial regulatory and transcriptional changes in psychiatric disease. In
summary, scENCORE allows accurate and cost-effective A/B compartment reconstruction to delineate higher-order chromatin structure
heterogeneity in complex tissues.
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INTRODUCTION
The human genome is hierarchically compacted and organized in
the three-dimensional (3D) space to modulate critical biological
processes such as DNA replication, transcription, DNA repair, cell
division, and meiosis [1–6]. Such chromatin topological struc-
tures usually undergo precise spatiotemporal re-wiring during
healthy development, while its misfolding has been reported
during the onset and progression of numerous human diseases
[7–13]. Therefore, understanding cell-type-specific higher-order
chromatin structures, especially at the single-cell level, is critical
for grasping how cells with identical DNA can develop diverse
functions and fates, underpinning key aspects of developmental
biology and tissue differentiation [14–16]. And it is also essen-
tial for investigators to quantify their alterations across various
states, such as in disease and controls, to better understand the
implications of these changes.

Alterations in chromatin compartmentalization can affect
gene expression patterns, influencing cellular function, identity,

and a broad spectrum of diseases [17]. Moreover, investigating
chromatin compartmentation enhances our understanding of
how environmental factors can modify gene expression without
changing the DNA sequence itself [18]. Over decades, the
development of novel visual techniques such as fluorescence
in situ hybridization [19–24] and molecular approaches including
chromosome conformation capture and its derivatives [16, 22, 25–
35] have offered unprecedented opportunities to directly map the
folded state of an entire genome [36, 37]. For instance, the Hi-C
technique [16, 38] has been developed to extract the genome-scale
contact map between any pair of genomic loci simultaneously,
using high-throughput sequencing. This technique has been
widely used in numerous complex tissues and disease states,
enabling scientists to examine the genome’s 3D organization
at multiple scales [16, 38–41]. However, such genome-wide
scalability usually requires the pooling of millions of cells
as input, leaving the resultant contact probabilities reflecting
only an average of chromatin interaction frequencies across
diverse cell populations. Recently, several pioneering studies
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Figure 1. The overview of scENCORE’s framework. Top: single-cell epigenetic data are segmented into bins—standardized genomic regions—and
processed through metacell analysis to create a bin-by-metacell matrix. This matrix is used to construct an interactive graph, depicting genomic
interactions. Bottom right: clustering and get the A/B compartment. Bottom middle: graph alignment. Bottom left: joint UMAP and compute the CSS.

have successfully performed Hi-C on single isolated cells [42,
43], exposing extensive cell-cycle state differences and cell-to-
cell heterogeneity in mammalian chromosomal conformation.
Unfortunately, they are still expensive and unavailable for most
investigators. As a result, it is still challenging to obtain detailed
chromatin conformation information for a large number of cell
types/states and individuals.

In contrast, emerging single-cell epigenetic sequencing
technologies have been developed for convenient, cost-effective,
and simultaneous profiling across thousands of cells [44–55].
Recent studies, such as C.Origami [56], use single-cell epigenetic
sequencing to predict Hi-C data in a supervised manner,
necessitating well-annotated Hi-C for training. However, this
approach may face limitations when sufficient Hi-C data are
lacking. Furthermore, recent transparent data-sharing initiatives
already provided scientists direct access to atlas-level single-cell
epigenetic data in complex tissues [57–60] and across diverse
disease cohorts [49, 53]. It has been proved that long-range
correlations from bulk-tissue epigenetic profiles can reliably
reconstruct mega-base scale A/B compartments, which are highly
consistent with results inferred from Hi-C data [61]. Therefore,
we propose a novel computational method (scENCORE; Figure 1)
to delineate cell-type-specific genome compartmentation by
utilizing the relatively lower cost and widely available single-
cell epigenetic data, especially the single-cell sequencing assay
for transposase-accessible chromatin data (scATAC-seq) [46, 49,
51, 53].

Our method, scENCORE, uses single-cell epigenetic data
to predict genome conformation through a three-step graph
embedding approach. First, scENCORE constructs a cell-type-
or condition-specific graph to mimic the genome contact map. In
this graph, nodes and edges represent genome bins and their long-
range epigenetic correlations, respectively. Second, scENCORE
projects genome bins into a latent space using a graph embedding
algorithm and clusters bins into groups representing A/B com-
partments. Finally, we further calculate a compartment switching
score (CSS) for each bin to quantitatively evaluate chromatin
conformation changes across conditions (e.g. different cell states
or disease vs. control). This is achieved by aligning condition-
specific bin embeddings to the same latent space. To illustrate the
robustness and general validity of our approach, we applied scEN-
CORE to both population-scale bulk and single-cell epigenetic
data. Our results demonstrate that scENCORE accurately predicts
A/B compartments defined by Hi-C experiments. Additionally, our
findings suggest that scENCORE can identify subtle chromatin
re-structuring across biologically close cell types and highlight
key switching events associated with psychiatric disorders.
We have implemented scENCORE as a free software package
(https://github.com/aicb-ZhangLabs/scENCORE) available for the
community to predict A/B compartments in the 3D genome
and quantify their changes across diverse cell types and
conditions. With the explosion of available single-cell epigenetic
data, we anticipate that scENCORE will help delineate cell-
type-specific chromatin conformation in complex tissues and
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advance our understanding of the relationships between genome
compartmentalization and gene regulation at a single-cell
resolution.

METHOD
Modeling chromatin conformation with graph
embedding
Inspired by previous population-scale bulk tissue analyses
[61], we hypothesize that reliable reconstruction of cell-type-
specific higher-order chromatin interactions can be achieved
using long-range genomic profile correlations from single-cell
epigenetic data. Compared to single-cell Hi-C experiments,
direct computational chromatin conformation reconstruction
could be a more cost-effective alternative, as atlas-level single-
cell epigenetic data, specifically scATAC-seq data, are already
publicly available to the public for many complex tissues and
disease conditions. We propose a general framework, named
scENCORE (Figure 1), to infer personalized, cell-type-specific A/B
compartments from single-cell epigenetic data and quantitatively
measure compartment-switching events across diverse cell states
and disease conditions.

As shown in Figure 1, scENCORE first divides the genome into
fixed-length bins (default at 1Mbp length). This binning process
involves segmenting the genome into defined regions, such as
(chr1:1–1,000,000), (chr1:1,000,001–2,000,000), and so forth. We
ensure accuracy and relevance by excluding bins that overlap
with the blacklist regions as defined by the ENCODE consortium
[62]. After binning the genome, we count the scATAC-seq reads
in each genome bin of individual cells. Then we employ metacell
technology to mitigate the sparsity of scATAC-seq data (see the
long-range epigenetic correlation calculation part in the method
section), followed by constructing a correlation matrix between
genome bins. This forms the basis of our interactive graph, where
each node represents a bin, and the edge weights signify the
correlation between these bins. Then, scENCORE learns a low-
dimensional genome bin (node) representation by summarizing
their potential interactions on the graph with the rest of the
genome and clusters them into different compartments (Figure 1,
bottom right). This process is repeated for each cell type to infer
individualized, cell-type-specific chromatin conformation on per-
sonal epigenomes. Finally, scENCORE aligns diverse embedding
spaces across different samples and individuals (Figure 1, bottom
middle), allowing the derivation of A/B CSS across diverse states
(cell types or disease conditions) and highlighting higher-order
chromatin rewiring events. Since scENCORE generates embed-
dings for all nodes simultaneously, it belongs to the transduc-
tive method. Table 1 shows the symbols’ definitions of scEN-
CORE. For a detailed analysis of scENCORE, please refer to the
appendix.

Problem formulation
Given a single-cell ATAC-seq matrix F ∈ R

N×c, where N is the
number of valid chromatin regions, c is the number of cells and Fij

denotes the accessibility value of the jth cell at the ith chromatin
region. Our goal is to determine a binary vector H ∈ {0, 1}N

where Hi represents the compartment type of the ith chromatin
region (1 for A-compartment and 0 for B-compartment). The
derived compartments from H should be consistent with
the higher-order chromatin structure represented in Hi-C
results.

Table 1: Symbols’ definitions.

Symbols Definitions

F ATAC-seq matrix for single cells
N, c # chromatin regions, # cells
mc, m # metacells, # cells per metacell
k, γ # neighbors and max overlap in metacell
M Metacell composition matrix
Fm, Fn Metacell feature matrix, normalized matrix
H Binary vector for compartment classes
C, G Correlation matrix, interaction graph
V, E, A Nodes, edges and adjacency matrix of G
t Threshold for graph sparsity
d Dimension of latent representation
φ, W Mapping function, node embedding
v, u Example nodes in V
simG, simE Similarity in original and latent spaces
P, Q Empirical and noise distribution in NCE
λ, s Variable and negative samples in NCE
β Starting node distribution in pagerank
α, πβ Damping factor and vector in pagerank
R, � Mapping matrices in graph alignment
Id Identity matrix
S1, S2 Examples of samples
U, �, V′ Matrices in singular value decomposition
W′, W′′ Normalized and aligned node embeddings
DS1,S2 Distance between samples S1 and S2
CSSS1,S2 Compartment switching score

Long-range epigenetic correlation from
scATAC-seq data
Due to the sparseness of the sample in scATAC-seq data, not every
cell fragment can appear in each region, leading to an abundance
of zeros in the ATAC-seq matrix F ∈ R

N×c, where N is the number
of valid chromatin regions and c is the number of cells. This
sparsity can result in low correlation coefficients between regions.
To address this, we introduce the concept of a metacell. A metacell
is essentially a composite cell, representing an aggregation of cells
with similar characteristics to increase data density.

Metacell construction
We construct mc metacells, where each metacell consists of a
group of m cells. These metacells are constructed to mitigate the
effects of data sparsity by aggregating the data from multiple
similar cells. The composition matrix of metacells is denoted as
M ∈ R

mc×m, where Mij, ranging from one to c, indicates the jth cell
that constitutes the ith metacell. The process involves identifying
clusters of cells based on similarity in their ATAC-seq profiles
(here we use the first 20 dimensions of PCA). Following this, cells
are grouped into clusters using a K-nearest neighbors’ algorithm
with the number of neighbors k = 100. To ensure distinct metacell
identities, we regulate the composition of each metacell with
a maximum overlap rate parameter, denoted as γ , set at 0.9.
This parameter limits the proportion of metacells to which any
individual cell can belong.

Meta-cell feature matrix calculation
With the metacells defined, we compute a new metacell feature
matrix Fm ∈ R

N×mc. For the ith metacell, its feature matrix Fm(., i)
can be computed as follows:

Fm(., i) =
m∑

j=1

F(., Mij). (1)
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This equation aggregates cell features within a metacell, resulting
in a denser and more representative feature matrix.

Normalization and correlation calculation
To facilitate the computation of correlations between different
regions, we first apply term frequency normalization to the meta-
cell matrix Fm:

Fn = Fm∑mc
i=1 Fm(., i)

, (2)

where
∑mc

i=1 Fm(., i) ∈ R
N represents the sum of samples of the

same metacell in different regions, and Fn ∈ R
N×mc is the nor-

malized feature matrix. The correlation between the ith and jth
regions can then be computed as

Cij =
∑c

k=1(Fn(i, k) − Fn(i, .))(Fn(j, k) − Fn(j, .))√∑c
k=1(Fn(i, k) − Fn(i, .))2

√∑c
k=1(Fn(j, k) − Fn(j, .))2

(3)

This equation calculates the correlation coefficient between dif-
ferent regions, allowing us to measure interactions across the
genomic landscape.

Graph construction
To better characterize the interaction between regions, we first
constructed an interact graph G = (V, E, A), which is made up
of a set of N nodes V and a set of edges E. A ∈ R

N×N is an adja-
cency matrix where nonzero entries equal the corresponding edge
weights. The construction process assumes that a higher value in
the interact matrix C indicates that the two regions are more likely
to be connected, that is, the two nodes in the graph have a greater
probability of having edges. Given this assumption, we consider
the following way to construct it [63, 64]: Aij = Cij ifCij ≥ t else0,
where t is the threshold hyperparameter that controls the graph
sparsity. In the constructed graph, we have (i, j) ∈ E if Aij �= 0.
Different graph construction methods and the impact of different
construction parameters on the results are in the appendix.

Graph representation learning in scENCORE
Inspired by recent advancements in graph embedding methods
[63, 65–70], we adopt the following graph embedding method to
derive high-quality region representations. The aim is a mapping
function φ : V → R

N×d, d � N, representing each node v ∈ V in a
reduced dimension d. Given graph similarity simG : V × V → R (a
measure quantifying the relationships between nodes, calculated
using techniques like personalized pagerank, adjacency similarity,
where nodes are genomic regions), and the corresponding sim-
ilarity in the embedding space simE : V × V → R, we require∑

u∈V simG(v, u) = 1 and
∑

u∈V simE(v, u) = 1 for any node v ∈ V to
represent the similarity distributions. The similarity in embedding
space simE(v, u) is obtained as follows:

simE(v, ·) = exp(WvWT)∑N
i=1 exp(WiW

T)
. (4)

To align simE with simG, we minimize their divergence for v ∈ V:

L = −
∑

simG(v, ·) log(simE(v, ·)). (5)

Due to computational costs, we adopt Noise Contrastive Estima-
tion (NCE) [71]:

LNCE =
∑

[log PrW(λ = 1|simE(v, u))

+
∑

log PrW(λ = 0|simE(v, ũ))],
(6)

where the node v is drawn from the empirical distribution P, λ = 1
for u drawn from simG(v, ·), and λ = 0 for sample nodes ũ drawn
from the noise Q(v). For training efficiency, we have: s � N. We
compute PrW as the sigmoid σ(x) = (1 + e−x)−1 of the dot product
of Wv and Wu. In the experiment, we set the initial embedding
matrix W, P and Q distributed uniformly.

We adopt the personalized pagerank (PPR) [72] for simG(v, ·).
Given a starting node distribution β, damping factor α that con-
trols the range of the explored neighborhood, and normalized
adjacency matrix A, we can infer the PPR vector π via a recursive
way:

πβ = (1 − α)β + απβA. (7)

This recursive formula is implemented using a random walk with
restart from a node v. The walk transitions to adjacent nodes
based on A, with a probability dictated by the damping factor α

to either continue or restart. This ensures that the PPR vector πβ

effectively captures the steady-state probability of visiting each
node, indicating their relative importance or similarity from node
v’s perspective.

Unsupervised clustering
Using trained embedding W, we apply the Expectation-
Maximization (EM) algorithm on two multivariate Gaussian
mixtures. Resulting probabilities, (P1, P2) = EM(W, n = 2),
denote each chromatin region’s compartment likelihood. The
compartment with the higher fragment average is labeled A, and
the other B.

Graph alignment in scENCORE
Due to the inconsistencies in node embeddings across multi-
ple runs of the same algorithm, comparing dynamic changes
across samples becomes a challenge [73]. scENCORE addresses this
through orthogonal Procrustes graph alignment [74], enabling the
comparison of embeddings of the same chromatin region across
different samples. We get the normalized embeddings W′

S1 and
W′

S2 using min-max normalization to WS1 and WS2. Then we find
an orthogonal matrix � that best maps W′

S1 to W′
S2, which can be

formulated as follows:

R = arg min
�

‖W′
S1� − W′

S2‖F, subject to�T� = Id, (8)

where ‖ · ‖F is the Frobenius norm and Id is the identity matrix.
Using singular value decomposition, if W′

S1
TW′

S2 = U�VT, the
optimal R is given by UVT. After alignment, the embeddings are
represented as W′′

S1 = W′
S1� and W′′

S2 = W′
S2, which reside in a

common space, allowing for meaningful comparison.

CSS calculation
To measure changes of chromatin regions across samples, we
introduce the CSS. For two samples, S1 and S2, with their aligned
embeddings, we compute a distance matrix DS1,S2 ∈ R

N based on
the Euclidean distance between the embeddings. The CSS is then
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calculated as follows:

CSSS1,S2 = 1 − exp(−DS1,S2) (9)

Here, CSSS1,S2 ∈ R
N represents compartment switching scores for

N regions. A score near one suggests that a region is more likely
to undergo a switching event.

RESULTS
scENCORE recovers Hi-C chromatin map from
bulk ATAC-seq
As a proof-of-concept application, we first applied scENCORE
on two independent bulk ATAC-seq data from large cohorts
of individuals. Specifically, we downloaded the HumanFC and
BrainGVEX bulk ATAC-seq data from the psychENCODE Synapse
portal, with 288 and 341 samples in each study. We used 1-
Mbp bins with no overlaps with known gap regions (see the
data preprocessing part in the appendix) and extracted the
normalized ATAC-seq signals in each bin to calculate the tissue-
level correlation matrices in both studies. To test whether such
long-scale epigenetic correlations can truly reflect chromatin
interaction maps, we compared the epigenetic correlation
matrices to the interaction matrix extracted from the Hi-
C experiment in perfectly matched prefrontal cortex tissue.
We found that the epigenetic correlation matrices are highly
consistent with the Hi-C interaction maps, as reflected by their
highly similar first eigenvectors (Figure 2A). For instance, the
Pearson correlation between the first eigenvectors of the Hi-C
interaction map (black line) and epigenetic correlation matrix
(colored line) was as high as 0.85 and 0.94 for the HumanFC and
BrainGVEX datasets, respectively.

We applied scENCORE to the bulk ATAC-seq data from two large
cohorts of individuals (HumanFC and BrainGVEX) to predict A/B
compartments. As shown in Figure 3(A–B), scENCORE achieves
F1 scores of 0.782 and 0.770 on the BRG and HFC datasets,
respectively, and AUC of 0.855 and 0.821, outperforming basic
methods (mean signal, first PCA and first eigenvector) as well as
famous graph-based approaches such as Node2Vec [75], ProNE
[76] and GraRep [77]. Here we conducted each method three
times, reporting the average to ensure robustness. For a detailed
comparative analysis, please refer to the appendix. Besides,
scENCORE reported a similar number of A/B compartments
in both studies (980 and 1043 A compartments), which is
highly consistent with the Hi-C derived compartmentations
using various thresholds (above 0.77 and 0.79 for both studies,
Figure 2B). In addition, we calculated the tissue-matched H3k27ac
ChIP-seq signals on different compartments. We found that the A
compartment demonstrated significantly higher H3k27ac signals
(P-value < 4.85e-276 for all six samples in Figure 2C), consistent
with its more active roles in the genome. We repeated this calcula-
tion on three randomly selected samples and observed consistent
results. These results demonstrate the feasibility of estimating
chromatin conformation using epigenetic correlations, which
could potentially provide an alternative approach to single-cell Hi-
C experiments for studying chromatin structure at the population
scale.

scENCORE reconstructs A/B compartments
validating by cell-specific Hi-C data
Next, we attempted to reconstruct higher-order chromatin confor-
mation in major cell types in the human brain using scATAC-seq

data. Please refer to the supplementary file for the details about
the cell-type-specific scATAC-seq data. We used publicly avail-
able, cell-type-matched Hi-C data from previous studies for vali-
dation [78, 79].

We applied scENCORE to different cell types to predict A/B
compartments and used two independent functional genomics
data generated from FACS-sorted cells for separate validations. As
expected, we found that the first eigenvectors of the long-range
epigenetic correlation matrices and chromatin interaction matri-
ces from cell-type-matched Hi-C experiments were highly consis-
tent (Pearson correlation 0.81 and 0.61, Figure 4A), demonstrat-
ing the feasibility of our approach. Next, we projected genome
bins into a low-dimensional latent space and observed distinct
A/B compartment clusters in all cell types (Figure 4B). As an
illustration, we highlighted bins on chromosome 2 in Figure 4(B).
Additionally, we demonstrated that our results are accurate and
robust to hyperparameters such as meta-cell sizes using cell-type-
matched Hi-C experiments (Figure 4C and the validation part in
the method section).

The literature indicates that the A compartment is transcrip-
tionally more active and enriched with positive regulatory signals.
Therefore, we downloaded cell-type-specific H3K27ac ChIP-seq
data from the psychENCODE project, which is widely considered
an active enhancer signature. We then compared the averaged
H3K27ac signal strengths in our predicted A/B compartments. As
expected, A compartments showed significantly higher H3K27ac
signals than those in B compartments using cell type matched
ChIP-seq experiment (Figure 4D, log fold change 1.09 vs. 0.57 in
excitatory neuron with P-value 1.81e-208, 1.04 vs. 0.63 in microglia
with P-value 3.10e-73), demonstrating the robustness of our pre-
dictions. Furthermore, we found that the A compartments showed
the highest H3K27ac signal enrichment in matched ChIP-seq
experiments. For instance, the cell-type-matched H3k27ac log fold
changes were 0.64 and 0.51, significantly higher than those from
non-matched cell types (0.34 and 0.39, Figure 4D). These results
indicated that scENCORE was able to capture cell-type-specific
chromatin conformation in complex tissues.

Finally, we calculated the pairwise Jaccard similarity using
scENCORE’s A/B compartment predictions (see the pairwise Jac-
card similarity section of the appendix) across seven cell types and
performed hierarchical clustering based on the similarity matrix.
As expected, while neurons and non-neuron cell types can be
reliably separated, different cell types only demonstrated mod-
erate similarities (0.74∼0.84, Figure 4E). These results highlight
the significance of reconstructing chromatin conformation at the
single-cell level.

scENCORE identifies key compartment switching
events between different cell types
In the previous sessions, scENCORE extracted separate cells from
different types for independent training and graph representation
learning. This results in genome embeddings in disjoint latent
spaces. However, in many applications, it is important to compare
chromatin conformations and quantify their changes across cell
types or conditions. To address this, scENCORE includes a graph
alignment module that maps separate embeddings to a shared
space, facilitating direct comparison analyses across cell types
(see the graph alignment part of the method section). Conse-
quently, we can calculate CSS using a normalized L2 distance in
the aligned space to quantify the chromatin compartment switch-
ing status. A larger CSS indicates a more significant difference in
the A/B compartment assignment.
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Figure 2. Consistency between chromatin interaction maps and population-scale bulk ATAC-seq. (A) Similarity of eigenvectors between Hi-C and bulk
ATAC-seq data. (B) Agreement of scENCORE’s predictions with Hi-C compartmentations. (C) Tissue-matched H3k27ac ChIP-seq signals on different
compartments.

Figure 3. Chromatin conformation benchmark with F1 Score and AUC.
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Figure 4. scENCORE’s cell-type-specific A/B compartment predictions. (A) First eigenvector of single cell epigenetic correlation maps. (B) A/B compart-
ment groupings in UMAP. (C) Alignment of scENCORE predictions with Hi-C by metacell. (D) Comparison of H3K27ac signals in A/B compartments.
(E) Jaccard similarity for A/B compartment across cell types.

We ranked the genome bins based on their CSSs and identi-
fied several well-known brain marker genes located in the top
rewired regions. For instance, a well-known neuron marker gene
SATB2 was found in the more active compartment in excita-
tory neurons but switched to the B compartment in microglia
(Figure 5A). Its associated bin has a high CSS at 0.54, ranking
255th out of 2329 among all genome bins. As expected, SATB2 was
highly expressed in neurons, showed enriched H3K27ac signals
(1.14 vs. 0.87, Figure 5B), and contained extensive open chromatin
regions with potentially positive regulatory activities (Figure 5C).
Similarly, the microglia marker MRC experienced the opposite
compartment-switching process (from A in microglia to B in
excitatory neurons, Figure 5D). With a high CCS of 0.59 and rank-
ing ninth among the 2329 genome bins, it demonstrated signif-
icantly stronger H3K27ac signals (0.41 vs. 0.26, Figure 5E) and
chromatin accessibility scores in microglia than in excitatory
neurons (Figure 5F).

To further establish the biological significance of the identified
compartment switches, we compared the top 30 CSS-ranked bins
to the bins housing the top 100 differential expressed genes (DEGs)
related to neurological diseases. This analysis revealed a higher
DEG presence within scENCORE-identified bins than what was
observed in bins selected randomly. As shown in Figure 5(G) and
(H), this pattern of DEG enrichment, consistently replicable across
ten iterations, was statistically significant (Mann–Whitney U test,
P < 0.0002), underscoring the efficacy of scENCORE in detecting
compartment switches with potential links to neurobiological
functions and disorders.

scENCORE highlights extensive cell-type-specific
chromatin re-structuring events in brain
disorders
We applied scENCORE to individuals with MDD and compared
their chromatin conformation with healthy controls across

different cell types. Specifically, we calculated cell-type-specific
CSS to search for chromatin compartment switching events.
We identified one of the top-ranked regions with the highest
CSS in chromosome two (chr2: 15–16 Mbp), which has been
assigned the more active A compartment in controls but inactive
B compartment in MDD. To explore this region further, we
calculated the Pearson correlation (ρ) of epigenetic signals
between this bin and other bins on the same chromosome. We
then plotted the absolute correlation difference (|�ρ|) between
the MDD sample (ρm) and control sample (ρc). Intuitively, larger
changes represented bigger interaction alterations between
conditions. Our prioritized region demonstrated noticeably higher
long-range interaction relationships change with other bins on
the same chromosome (Figure 6A) compared to the rest of the
genome.

scENCORE further highlighted that the previously reported
MDD risk gene NBAS is located in this region. NBAS is transcrip-
tionally active in most cell types, especially in neurons (Figure 6B).
We performed differential gene expression analysis on matched
RNA-seq data and found that NBAS is downregulated only in
excitatory neurons of MDD samples, as shown in Figure 6(C).
Consistently, this scENCORE prioritized region demonstrated
the highest CSS in excitatory neurons (0.50 vs. an average of
0.43 in other cell types, Figure 6D). Specifically, NBAS is located
in the active A compartment in healthy controls but switches
to the inactive B compartment in MDD samples. This finding
potentially explains its downregulated gene expression values
only in excitatory neurons. These results demonstrate the
potential of scENCORE to pinpoint disease-associated chromatin
compartment switching events in a cell-type-specific manner and
decipher how higher-order chromatin conformation changes can
lead to transcriptional perturbations in disease.

Following a similar approach as in the cross-cell type analysis,
we also examined chromatin compartment switches from control
to MDD using scENCORE. We compared the top 30 CSS-ranked
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Figure 5. scENCORE identifies key compartment switching events between different cell types. (A) scENCORE reported chr2_200 to be in the more active
compartment in excitatory neurons but switched to the B compartment in microglia. (B) A well-known neuron marker gene SATB2 is highly expressed
in neurons, and showed enriched H3K27ac signals. (C) Neurons contain extensive open chromatin regions with potentially positive regulatory activities.
(D) scENCORE reported chr10_18 to be in the more active compartment in microglia but switched to the B compartment in excitatory neurons. (E) A
microglia marker MRC demonstrated significantly stronger H3K27ac signals. (F) More chromatin accessibility scores in microglia than in excitatory
neurons. (G) Boxplot comparison of DEG counts in excitatory neuron compartment A to microglia compartment B switches versus random selection
(P < 0.0002). (H) Boxplot of DEG counts in excitatory neuron compartment B to microglia compartment A switches, again showing scENCORE’s significant
identification (P < 0.0002).

Figure 6. scENCORE highlights cell-type-specific chromatin re-structuring events in brain disorders. (A) Long-range epigenetic correlation shifts.
(B) The activity of MDD risk gene NBAS in cell types. (C) Downregulation of NBAS in MDD’s excitatory neurons. (D) Highest CSS in excitatory neurons
in the prioritized region. (E) Boxplot comparison of DEG counts in control compartment A to MDD compartment B switches versus random selection
(P < 0.0002). (F) Boxplot of DEG counts in control compartment B to MDD compartment A switches, again showing scENCORE’s significant identification
(P < 0.0002).

bins against bins with DEGs associated with MDD. The results
showed more DEGs in scENCORE-selected bins than in randomly
selected bins, as depicted in Figure 6(E) and (F). This pattern,
replicated over ten iterations, was statistically significant (Mann–
Whitney U test, P < 0.0002), demonstrating scENCORE’s capability
in identifying chromatin changes relevant to disease.

DISCUSSION AND CONCLUSION
This paper introduces scENCORE, a computational method that
leverages single-cell epigenetic data to reconstruct personalized
and cell-type-specific higher-order chromatin compartment
information. While recent developments in single-cell Hi-C
technology shed light on constructing chromatin conformation
in individual cells, it is not yet widely available in most labs
and can be expensive to perform on the population-scale
sequencing. In contrast, scENCORE approximates chromatin
contact frequencies using long-range epigenetic correlations
and offers two main advantages: it is more cost-effective
and accessible, and it can predict personalized chromatin
compartments, enabling the direct quantification of higher-order
conformation changes across conditions (e.g. disease and control).

To prove the effectiveness of scENCORE, we conducted mega-
base scale chromatin analysis on bulk tissue and single-cell
ATAC-seq data and benchmarked against results from tissue or
cell-type matched Hi-C experiments. Our findings showed that
scENCORE can faithfully reconstruct chromatin compartments
and highlight key switching events across different cell types
and conditions. Moreover, the incorporation of graph embedding
in scENCORE supports the capture of non-linear relationships
between chromatin regions, a capability not afforded by naïve
methods like the first eigen analysis. This graph-based approach
not only enhances the interpretability of the model but also
allows for the integration of multi-modal data, such as scRNA-
seq and scATAC-seq. Furthermore, the alignment feature of
scENCORE enables the quantitative analysis of CSS across
different regions, effectively quantifying variations in chromatin
conformation across various cell types or disease states. We
have implemented scENCORE as open-source software that is
freely downloadable to the public. With the exponential growth
of single-cell epigenetic data, scENCORE can be a valuable tool
for the research community to illuminate cell-type-specific
chromatin conformation and quantify their changes in disease
studies.
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Key Points

• We propose scENCORE to computationally reconstruct
chromatin compartments from the more affordable and
widely accessible single-cell epigenetic data.

• scENCORE achieves state-of-the-art results on bulk tis-
sue and single-cell data. Benchmarking using cell-type-
matched Hi-C experiments demonstrates that scEN-
CORE can robustly reconstruct A/B compartments in a
cell-type-specific manner.

• Our chromatin confirmation switching studies high-
light substantial compartment-switching events that
may introduce substantial regulatory and transcrip-
tional changes in psychiatric disease.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjourn
als.org/.
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