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Abstract
In this work, we focus on large graph similarity computa-
tion problem and propose a novel “embedding-coarsening-
matching” learning framework, which outperforms state-of-
the-art methods in this task and has significant improvement
in time efficiency. Graph similarity computation for metrics
such as Graph Edit Distance (GED) is typically NP-hard,
and existing heuristics-based algorithms usually achieves a
unsatisfactory trade-off between accuracy and efficiency. Re-
cently the development of deep learning techniques provides
a promising solution for this problem by a data-driven ap-
proach which trains a network to encode graphs to their own
feature vectors and computes similarity based on feature vec-
tors. These deep-learning methods can be classified to two
categories, embedding models and matching models. Embed-
ding models such as GCN-MEAN and GCN-MAX, which
directly map graphs to respective feature vectors, run faster
but the performance is usually poor due to the lack of in-
teractions across graphs. Matching models such as GMN,
whose encoding process involves interaction across the two
graphs, are more accurate but interaction between whole
graphs brings a significant increase in time consumption (at
least quadratic time complexity over number of nodes). In-
spired by large biological molecular identification where the
whole molecular is first mapped to functional groups and then
identified based on these functional groups, our “embedding-
coarsening-matching” learning framework first embeds and
coarsens large graphs to coarsened graphs with denser local
topology and then matching mechanism is deployed on the
coarsened graphs for the final similarity scores. Detailed ex-
periments on both synthetic and real datasets have been con-
ducted and the results demonstrate the efficiency and effec-
tiveness of our proposed framework in both similarity regres-
sion and classification tasks.

Introduction
With flexible representative abilities, graphs have a broad
range of applications in various fields, including social net-
work study, computational chemistry (Gilmer et al. 2017),
and biomedical image analysis (Ktena et al. 2017). Re-
cently, especially with the development of deep learning

∗Equal contribution with order determined by rolling the dice.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

techniques, there aroused surging interests on graph-related
problems. Here in this paper, we focus on large graph sim-
ilarity prediction problem, which is one of the fundamental
challenges and appears in various world applications includ-
ing biological molecular similarity search (Kriegel, Pfeifle,
and Schönauer 2004)(Tian et al. 2007) and social group
network similarity identification(Steinhaeuser and Chawla
2008)(Ogaard et al. 2013).

Traditionally, there are various evaluation metrics includ-
ing Graph Edit Distance (GED) (Sanfeliu and Fu 1983) de-
veloped for graph similarity computation problem. Existing
algorithms for these metrics can be divided into two classes.
The first one includes algorithms like (Riesen, Emmeneg-
ger, and Bunke 2013) and (McCreesh, Prosser, and Trim-
ble 2017) that calculate the exact values. While the exact
similarity scores for sure help us better understand the re-
lationship between graphs, it is indeed an NP-hard prob-
lem and requires exponential time complexity in the worst
case. The second class, which includes algorithms such as
(Neuhaus, Riesen, and Bunke 2006), (Jonker and Volgenant
1987), (Fankhauser, Riesen, and Bunke 2011), (Kuhn 1955)
and (Riesen and Bunke 2009), only computes the approx-
imate values and saves time in return. However, these al-
gorithms still run with polynomial or even sub-exponential
time complexity.

To date, graph neural networks (GNNs) have been proved
to be a potential data-driven solution for graph-related
tasks with relatively high accuracy and far lower time
cost in inference. Many graph convolution layers, such
as Graph Convolution Network (GCN) (Defferrard, Bres-
son, and Vandergheynst 2016), Edge Convolution Network
(EDGECONV) (Wang et al. 2019) and Graph Isomorphism
Network (GIN) (Xu et al. 2018), are proposed and demon-
strated powerful in embedding node features with original
labels and local topology. Also, as the structure of graph is
quite different from that of image, advanced pooling tech-
niques to downsample the graphs are developed, including
TOPKPOOLING (Gao and Ji 2019), SAGPOOL (Lee, Lee,
and Kang 2019) and MEMPOOL (Khasahmadi et al. 2020).

When we talk about graph similarity learning problem,
there always involves two stages: (1) embedding, which
maps each graph to its representation feature vector and
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Figure 1: Two classes of existing models

makes similar graph close in that feature space (2) similarity
computation based on these feature vectors. Existing deep
learning techniques for graph similarity computation prob-
lem can be clearly classified into two categories with the
different methods in first stage, as illustrated in fig. 1. The
first category, exemplified by HIERARCHICALLY MEAN
(GCN-MEAN) and HIERARCHICAL MAX (GCN-MAX)
(Defferrard, Bresson, and Vandergheynst 2016), directly
maps graphs to feature vectors by hierarchically coarsening
the graphs while the second category embraced by GRAPH
MATCHING NETWORKS (GMN) (Li et al. 2019) embeds
pair of graphs at the same time with a cross-graph match-
ing mechanism. Other techniques like GSIMCNN (Bai et al.
2018b) and GRAPHSIM (Bai et al.) are similar to the sec-
ond category except that they do not generate two sepa-
rate feature vectors but instead directly embed graph pair
to similarity score with cross graph mechanism. Meanwhile
SIMGNN (Bai et al. 2018a) deploy the two categories above
parallelly. For simplicity, in the remaining content of this pa-
per we will call the first category embedding models and the
second matching models.

On the one hand, embedding models can be quite faster
than matching models at inference stage. We here take sim-
ilarity search as an example where we have K graphs in the
database and we want to compute the similarity between a
new graph with all the graphs in the database. Because em-
bedding models can embed all the graphs in the database to
feature vectors in advance, these models only need to for-
ward the new graph to its feature vector and compute sim-
ilarity K times based on feature vectors. Meanwhile, when
there comes a new graph, matching models have to forward
it respectively with all the graphs in the database (across
graph mechanism can not be finished in advance), which is
absolutely time-consuming. Details about time complexity
analysis will be shown in Section 3. On the other hand, as
the feature vectors generated by embedding models do not
involve interaction between graphs, the performance of em-
bedding models are far worse than matching models.

Let’s consider the process of biological or chemical
molecules identification, we always map them to molecular
groups and evaluate their similarity based on these groups
with denser local topology instead of directly identifying the
whole molecules. Inspired this process as well as the suc-
cess of pooling methods on graph classification problem and

matching mechanism on graph similarity prediction prob-
lem, we propose our ”embedding-coarsening-matching”
graph similarity computation framework COSIM-GNN, i.e.,
Coarsening-based Similarity Computation via Graph Neural
Networks. As illustrated in fig. 2, graph embedding layers
and pooling layers are first applied to encode and coarsen
the graphs and then matching mechanism is deployed on the
coarsened graph pair to compute similarity between graphs.
In the first two stages of our model, there is no interaction
across graphs so this part can be finished in advance in in-
ference time or similarity search problem in order to save
time. Meanwhile the intra-attention brought by coarsening
and inter-attention introduced in matching part guarantee the
performance, which is even better than to directly apply the
matching models.

Many existing pooling methods can be incorporated in our
framework and achieve relatively good performance. How-
ever, we notice that these state-of-the-art pooling mecha-
nisms always involve a process of generating centroids for
pooling but the generation process of centroids never rely
on the input graphs, which does not make sense intuitively
because the centroids for different graph should be differ-
ent. Thus we propose a novel pooling layer ADAPTIVE
POOLING. The generation process of centroids in ADAP-
TIVE POOLING is input-related and still keep the property
of permutation invariance, leading to better performance
than state-of-the-art pooling techniques. We highlight our
main contributions as follows:
• We propose a novel framework, which first hierarchically

encodes and coarsens graphs and then deploys matching
mechanism on the coarsened graph pairs, to address the
challenging problem of similarity computation between
large graphs.

• We propose a novel pooling layer ADAPTIVE POOLING.
The generation of centroids in this layer is based on the in-
put graph, which leads to better performance while main-
taining permutation invariance.

• Our framework shows significant improvement in time
complexity as compared to matching models and outper-
forms matching models (thus far better than embedding
models) on both similarity regression and classification
problems.

• We conduct extensive experiments on both real graph
datasets and synthetic datasets consisted of large graphs,
which will be detailed in Section 4 to demonstrate the
scalability, effectiveness and efficiency of our proposed
framework.

• Our framework is able to learn from graph pairs with rela-
tively small number of nodes (approximate 100) and then
be deployed to infer similarity between very large graphs
with thousands of nodes.

Proposed Framework
In order to reduce the high time consumption brought by
interaction across whole large graphs and take the advantage
of the combination of intra- and inter- attention mechanism,
we propose our novel COSIM-GNN framework, as shown



in Figure 2. In this section, we respectively introduce how
each stage works in details. We use bold font for matrices
and tilt font for function in this section. The right superscript
of a matrix stands for graph number indicator and the right
subscript stands for the stage of the matrix. For example,
X(1)
in means the node feature matrix for the first input graph

and A(2)
encode means the adjacency matrices for the second

graph after encoding.
Starting with two input node sets denoted as X

(1)
in ∈

Rn
(1)
in ×d

(1)
in and X

(2)
in ∈ Rn

(2)
in ×d

(2)
in as well as the adjacency

matrix A
(1)
in ∈ Rn

(1)
in ×n

(1)
in and A

(2)
in ∈ Rn

(2)
in ×n

(2)
in , we in

each part first give the overall equation on how the stage
works and then make detailed explanations on the overall
equation.

Encoding
In the first stage, we employ k encoding layers
(F1, F2, ...Fk) on the two input graphs respectively
for embedding feature of nodes and transform the feature
dimension of nodes to dencode, just as shown in (1) below:

X
(i)
encode,A

(i)
encode = Fk(Fk−1(...F1(X

(i)
in ,A

(i)
in ))) (1)

where i = 1, 2, X(i)
encode ∈ Rn

(i)
in×dencode , A(i)

encode ∈
Rn

(i)
in×n

(i)
in . (2) shows that Fj (j = 1, 2, ..., k) is consisted

of a graph convolution layer GC, a non-linear activation σ
and a batchnorm layer bn.

F (X,A) = bn (σ(GC(X,A))) (2)

We use ReLU for σ here and graph embedding layers
GC can be GCN (Defferrard, Bresson, and Vandergheynst
2016), GAT(Veličković et al. 2017) or GIN (Xu et al. 2018).

Coarsening
What this stage does is to pool the encoded graphs, X(i)

encode

and A
(i)
encode, to coarsened graphs, X(i)

pool ∈ Rnpool×dpool

and A
(i)
pool ∈ Rnpool×npool . The overall transformation is

shown in equation 3, where σ is a non-linear activation func-
tion, W ∈ Rdencode×dpool is a trainable parameter matrix
standing for a linear transformation and C(i) ∈ Rnpool×n(i)

in

is an assignment matrix representing a projection from the
original node number to pooled node number. As C(i) as-
signs weights for nodes in the input graph to nodes in
the coarsened graph, it indeed stands for an intra-attention
mechanism.

X(i)
pool = σ

(
C(i)X(i)

encodeW
)

A(i)
pool = σ

(
C(i)Aencode(C(i))T

) (3)

Different approaches are adopted to compute the assignment
matrix Ci in different pooling layers and when we look at
one of the most representative pooling layer so far, MEM-
POOL (Khasahmadi et al. 2020), we notice that it gener-
ates memory heads, which stands for the new centroids in

the space of pooled graphs, without involvement of the in-
put graph. However, intuitively, the new centroids for differ-
ent graphs should be different. Thus here we propose a new
method: ADAPTIVE POOLING, to calculate C. We first gen-
erate h batches of centroids Ki ∈ Rh×npool×dencode based
on the encoded graph (permutation invariance remains)
and then compute and aggregate the relationship between
every batch of centroids and the encoded graph, leading to
the final assignment matrix C. Detailed ablation study about
pooling layer is conducted in Section 4, which demonstrates
the effectiveness of ADAPTIVE POOLING.

As shown in equation 4, an average aggregation Favg over
the encoded graph is deployed, transforming Xencode ∈
Rnin×dencode to Xavg ∈ R1×dencode . Then an Multi-
ple Layer Perceptron (MLP) is applied to map Xavg to
K ∈ R(h×npool)×dencode , after which K is reshaped to
Rh×npool×dencode . Note that the generation of batches of
centroids here is dependent on the encoded graph (input of
this layer), which makes sense because centroids for differ-
ent input graphs in training and testing set should be differ-
ent. Besides, due to the mean aggregation we apply here,
we keep the property of permutation invariance in our pro-
posed pooling method, one of the most important properties
for graph-related deep learning architecture.

K = MLP (Favg (Xencode)) (4)

Then we compute the relationship Cp ∈ Rnpool×nin (p =
1, 2, ..., h) between every batch of centroids Kp ∈
Rnpool×dencode (p = 1, 2, ..., h) and Xi

encode ∈
Rnencode×dencode . We empirically find that a cosine similar-
ity leads to satisfactory pooling performance, as described
in equation 5, where a row normalization is deployed in the
resulting similarity matrix.

Cp = cosine (Kp,Xencode)

Cp = normalize (Cp)
(5)

We finally aggregate the information of h relationship Cp ∈
Rnpool×nin . In (6), we concatenate Cp (p = 1, 2, ..., h) and
perform a trainable weighted sum Γφ to the concatenated
matrix, leading to our assignment matrix C.

C = Γφ

(
|h|
‖
p=0

Cp

)
(6)

Matching

As shown in (7), this part aims to compute similarity based
on the interaction of two coarsened graphs. fmatch takes
the two coarsened graphs as input and generates feature
vectors X

(i)
final for respective graph. A cosine similarity is

deployed for the similarity score. Finally we compute the
Mean Squared Loss between the score and the ground truth



Figure 2: An overview of our ”embedding-coarsening-matching” framework COSIM-GNN. Encoding part aggregates features
respectively inside the two graphs. Then coarsening stage transforms the encoded graphs to batches of centroids and these
centroids jointly coarsen the graphs. Finally matching-based feature aggregation is deployed on the coarsened graph pair and
similarity score is computed based on the two graph-level feature vectors.

similarity GT for backward update.

X
(i)
final = fmatch

(
X

(i)
pool,A

(i)
pool,X

(j)
pool,A

(j)
pool

)
Score = cosine

(
X

(1)
final,X

(2)
final

)
Loss =

1

batchsize

batchsize∑
i=1

(Score(i)−GT (i))
2

(7)

Several matching mechanisms such as Graph Matching Net-
work (Li et al. 2019) and GSIMCNN (Bai et al. 2018b), can
be deployed for fmatch and here we give a simple exam-
ple. As shown in (8), there are three propagators fP and one
aggregator fA to transform the pooled graphs to respective
feature vector.

X
(i)
final = fA

(
fP

(
X

(i)
pool,A

(i)
pool,X

(j)
pool,A

(j)
pool

))
(8)

In the propagators fP , we aggregate both inside features
(I(i)) and external features (M(i)). As shown in (9), we
first propagate features inside respective graph with a GAT
(Veličković et al. 2017) and add up the features for all the
neighbors of every node to form I(i) ∈ Rnpool×dpool .

X
(i)
gat = GAT

(
X(i), A(i)

)
I(i)(k) =

∑
∀j, A(i)(k,j)=1

X
(i)
gat(j), k = 1, 2, ..., npool

(9)

As for the inter-attention, we compute M(i) ∈ Rnpool×dpool

with fcross in (10). First a relationship mask is generated
across the graph pair, which involves matrix multiply for the
normalized graphs and a softmax activation (σ). Then we

apply the mask to the graph Xj and subtract Xi with the
masked Xj .

M(i) = fcross

(
X(i),X(j)

)
= X(i) − σ

(
X(i)

‖X(i)‖L2
· (X(j))T

‖X(j)‖L2

)
· X(j)

(10)

After the above two steps, we apply fnode to embrace all
these features including the original input by concatenating
all these features and deploying an MLP on the concate-
nated matrix.

X
(i)
P = fnode

(
X

(i)
pool, I

(i),M(i)
)

= MLP
(
‖
(
X

(i)
pool, I

(i),M(i)
)) (11)

As for the aggregator, we use the following module proposed
in (Li et al., 2015), where LG, Lgate and L are simply im-
plemented with Multiple Layer Perceptron and the nonlinear
activation σ is the softmax function.

X
(i)
final = fA

(
X

(i)
P

)
= LG

(
σ
(

Lgate

(
X

(i)
P

))
· L
(
X

(i)
P

)) (12)

Time Complexity Analysis in Graph Similarity
Search Problem

For a pair of input graphs X
(1)
in ∈ Rn

(1)
in ×d

(1)
in and X

(2)
in ∈

Rn
(2)
in ×d

(2)
in , we can assume that they separately have m(1),

m(2) edges and the final embedded feature vectors for both
graphs are X

(1)
final ∈ Rdfinal and X

(2)
final ∈ Rdfinal . Then



Table 1: Time complexity comparison in similarity search problem.

Categories Time Complexity
Embedding models O (2×m+K × dfinal)
Matching models O ((2×m× 2 + n× n+ dfinal)×K)
CoSim-GNN O (2×m+ n× npool + (2×mpool × 2 + npool × npool + dfinal)×K)

we can analyse the time complexity over n(i)in , m(i) and
dfinal. Note that due to the fact that there exists a lot of
variance for each model, we here analyse the simplest cases
for each category and the real time consumption will be pre-
sented later in the Section 4. Table 1 shows the time com-
plexity comparison for embedding models, matching mod-
els and our proposed framework, which will be discussed
in details in the three parts below. In our settings, npool is
far less than n, thus our framework costs far less time than
matching models do, especially when the node number of
the graphs is very large.

Embedding models

Considering the simplest case here for embedding models,
we only visit every edge once and deploy two computational
operational on the two nodes it connect, which contributes
to the feature of local topology. Thus the computation com-
plexity for these cases is O

(
2×m(i)

)
, i = 1, 2.

Matching models

Assuming the simplest case here for matching models,
we first compute the relationship across X

(1)
in and X

(2)
in .

This part involves n
(1)
in × n

(2)
in computational operations

because we have to calculate the connection between ev-
ery node in X

(1)
in to all nodes in X

(2)
in . Then for each in-

put graph, we also visit every edge once and deploy two
computational operational on the two nodes it connect,
which also makes contribution to the feature of local topol-
ogy. Thus the computation complexity for these cases is
O
(

2×m(i) + n
(1)
in × n

(2)
in

)
, i = 1, 2.

Our framework

For our framework, we take the denotation in Section
2, that is the number of nodes in coarsened graphs is
npool. In the embedding stage, we similarly have to
visit every edge once and compute twice. Then in the
pooling part, we make an transformation from n

(i)
in dimen-

sional space to npool dimensional space, which costs us
n
(i)
in ×npool computational operations. Finally in the match-

ing stage, like what have been analysed in the previous
section, we need 2 × m

(i)
pool + npool × npool, i = 1, 2

operations. Thus the resulting complexity is
O
(

2×m(i) + n
(i)
in × npool + 2×m(i)

pool + npool × npool
)
, i =

1, 2.

Experiments and Results
Dataset Information
In most of the existing graph datasets, such as AIDS and
LINUX, the number of nodes is relatively small in each
graph. Thus the characteristics of the entire graphs can be
easily characterized and there is no need to coarsen the
graphs for better similarity computation results. From this
point of view, we here use two types of datasets for eval-
uating the performance of our framework. The first one is
relatively large graphs (with 15 or more nodes) in IMDB
dataset. The second one is synthetic graphs with more nodes.
We randomly divide each dataset to three sub-sets contain-
ing 60%, 20% and 20% of all graphs for training, validating
and testing.

Processing IMDB Dataset In this paper, we focus on sim-
ilarity computation of large graphs, so we filter the origi-
nal IMDB dataset(Yanardag and Vishwanathan 2015) and
choose all the graphs that have 15 or more nodes. The new
dataset is called IMDB-L.

Synthetic Dataset Information To generate an synthetic
dataset, we need to generate graphs and give ground truth
similarity for graph pairs. A small number of basic graphs
is first generated and then we prune the basic graphs to gen-
erate derived graphs with two different categories of prun-
ing rules: BarabsiAlbert preferential attachment model (BA
model) (Jeong, Néda, and Barabási 2003) and Erds-Rnyi
graph (ER model) (Erdos 1959)(Bollobás and Béla 2001).
Details about why we adopt this process and how these two
models work will be presented in appendix B. We generate
4 datasets: BA-60, BA-100, BA-200 and ER-100, where the
first two characters stand for generation rule and behind is
the number of nodes in the basic graphs for that dataset.

As for the ground truth calculation, A* algorithm cannot
be used to calculate the ged distance because of the large
number of nodes in our dataset. We propose to use the mini-
mum among four evaluation indicators: the three values cal-
culate respectively by HUNGARIAN,VJ, and BEAM and the
GED value we obtain while generating the graph. Then we
convert this minimum indicator to the similarity score with
a normalization of the minimums followed by a exponential
function, resulting in a value among [0, 1]. The details about
the ground truth generation can be found in appendix C.

Experiment Settings
Evaluation Metrics We apply six metrics to evaluate all
the models: TIME, Mean Squared Error (MSE), Mean Ab-
solute Error (MAE), Spearman’s Rank Correlation Coeffi-
cient (ρ) (Spearman 1961), Kendall’s Rank Correlation Co-
efficient (τ ) (Kendall 1938) and Precision at k (p@k). TIME



Table 2: Setting of different models in our framework.

Model Names Embedding Coarsening Matching

COSIM-ATT GIN SIMATT (Bai et al. 2018a) (npool = 1) OURMATCH
COSIM-CNN GIN ADAPTIVEPOOL (npool = 10) GSIMCNN (Bai et al. 2018b)
COSIM-SAG GIN SAGPOOL (Lee, Lee, and Kang 2019) (npool = 10) OURMATCH
COSIM-TOPK GIN TOPKPOOL (Gao and Ji 2019) (npool = 10) OURMATCH
COSIM-MEM GIN MEMPOOL (Khasahmadi et al. 2020) (npool = 10) OURMATCH
COSIM-GNN10 GIN ADAPTIVEPOOL (npool = 10) OURMATCH
COSIM-GNN1 GIN ADAPTIVEPOOL (npool = 1) OURMATCH

Table 3: Results for MSE and MAE in 10−3. The three traditional method are involved in the ground truth computation and thus
these values are labeled with superscript *.

Method BA-60 BA-100 BA-200 ER-100 IMDB-L
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

HUNGARIAN 186.19∗ 332.20∗ 205.38∗ 343.83∗ 259.06∗ 379.38∗ 236.15∗ 421.66∗ 2.67∗ 16.60∗

VJ 258.73∗ 294.83∗ 273.94∗ 404.61∗ 314.45∗ 426.86∗ 275.22∗ 463.53∗ 7.68∗ 22.73∗

BEAM 59.14∗ 129.26∗ 114.02∗ 206.76∗ 186.03∗ 287.88∗ 104.73∗ 226.42∗ 0.39∗ 3.93∗

GCN-MEAN 5.85 53.92 12.53 90.88 23.66 127.82 16.58 92.98 22.17 55.35
GCN-MAX 13.66 91.38 3.14 42.24 22.77 107.58 79.09 211.07 47.14 123.16

SIMGNN 8.57 63.80 6.23 47.80 3.06 32.77 6.37 45.30 7.42 33.74
GSIMCNN 5.97 56.05 1.86 30.18 2.35 32.64 2.93 34.41 5.01 30.43

GMN 2.82 38.38 4.14 34.17 1.16 26.60 1.59 28.68 3.82 27.28

COSIM-CNN 2.50 35.53 1.49 27.20 0.53 18.44 2.78 33.36 10.37 38.03
COSIM-ATT 2.04 33.41 0.97 22.95 0.73 16.26 1.39 27.27 1.53 16.57
COSIM-SAG 3.26 38.85 3.30 33.14 1.91 35.48 1.55 29.84 1.62 16.08
COSIM-TOPK 3.44 40.87 1.24 25.61 0.88 20.63 2.04 34.28 1.98 20.02
COSIM-MEM 5.45 48.07 1.11 24.59 0.32 14.82 1.74 26.78 1.57 17.02

COSIM-GNN10 2.04 33.04 1.01 23.53 0.40 16.43 1.38 27.43 1.68 17.57
COSIM-GNN1 1.84 32.36 0.95 22.06 0.36 15.42 1.17 25.73 2.00 18.62

is the least average time a model need to compute similar-
ity over one graph pair with the strategy similar to what we
discuss in Section 3. MSE and MAE measure the average
squared/absolute difference between the predicted similar-
ities and the ground-truth similarities. Details and results
about τ , ρ and p@k will be shown in the appendix A.

Baseline There are three types of baselines. The first cat-
egory consists of traditional methods for GED computa-
tion, where we include A*-Beamsearch (Beam) (Neuhaus,
Riesen, and Bunke 2006), Hungarian (Kuhn 1955) (Riesen
and Bunke 2009), and Vj (Jonker and Volgenant 1987)
(Fankhauser, Riesen, and Bunke 2011). Beam is one of the
variants of A* algorithm and its time complexity is sub-
exponential. Hungarian based on the Hungarian Algorithm
for bipartite graph matching, and Vj based on the Volgenant
and Jonker algorithm, are two algorithms in cubic-time. The
second category is made up of embedding models, includ-
ing GCN-Mean and GCN-Max (Defferrard, Bresson, and
Vandergheynst 2016). The third category consists of match-
ing models and we here involve GMN (Li et al. 2019) and
two matching-based models: SimGNN (Bai et al. 2018a) and
GSimCNN (Bai et al. 2018b).

Setting in Our Proposed Framework We provide ex-
periments on seven kinds of variants of our framework to

demonstrate its scalability and the effectiveness of ADAP-
TIVE POOLING. The names and settings of these seven vari-
ants are shown in Table 2. The parameters in our framework
are as below: k = 3, nencode = 64 (same in baselines),
h = 5, m = 5, lins = 2, lnode = 2, batchsize = 128 (same
in baselines).

We train models for 2000 iterations for BA datasets, 5000
iterations for IMDB-L and 10000 iterations on ER. The
model that performs the best on validation sets is selected
for testing. All experiments are conducted on the same de-
vice and details about this device are presented in appendix
D.

Results and Analysis
Effectiveness and Efficiency Statistic results are shown
respectively in Table 3 and 4. For better understanding the
results, we highlight best MSE and MAE results among all
the models in Table 3 and highlight the least time consump-
tion respectively among the four different categories (tradi-
tional methods, embedding models, matching models and
our proposed models) in Table 4. It is shown in the statistic
that models in our framework outperform matching mod-
els in every dataset and our proposed pooling layer achieves
the best performance among all the tested pooling method.
Here we emphasize three aspects. Firstly, it can be found



Table 4: Results for average time consumption on one pair
of graphs in milliseconds.

Method BA-60 BA-100 BA-200 ER-100 IMDB-L

HUNGARIAN >100 >100 >100 >100 >100
VJ >100 >100 >100 >100 >100

BEAM >100 >100 >100 >100 >100

GCN-MEAN 1.31 1.48 1.79 1.51 1.68
GCN-MAX 1.32 1.46 1.85 1.49 1.58

SIMGNN 2.92 3.24 5.26 3.46 4.34
GSIMCNN 2.07 2.73 5.16 2.86 3.16

GMN 5.77 9.36 28.57 10.00 9.89

COSIM-CNN 1.99 2.16 2.67 2.19 2.21
COSIM-ATT 1.85 2.02 2.34 1.99 2.12
COSIM-SAG 2.18 2.59 3.97 2.65 2.33
COSIM-TOPK 2.08 2.28 2.51 2.28 2.83
COSIM-MEM 3.30 3.56 3.95 3.50 3.58

COSIM-GNN10 3.29 3.51 4.03 3.63 3.09
COSIM-GNN1 1.83 2.01 2.31 1.97 2.08

Table 5: Results on Aminer dataset to show models’ gener-
alization ability. MSE and MAE are in 10−3 and time is in
second.

Method GCN-MAX GCN-MEAN GSIMCNN COSIM-GNN

MSE 7.76 8.43 48.37 3.64
MAE 59.79 73.45 176.44 50.37
Time 6.72 6.96 32.00 6.46

that for all the datasets, our framework outperforms all the
traditional methods, embedding models and matching mod-
els on both MSE and DEV. Secondly, it is shown that our
COSIM-GNN1 runs faster than any matching model. When
we take comparisons among BA datasets, it is clear that our
time consumption keeps low as the node number increases
and the gaps on time consumption between our models and
matching models keep increasing. Especially when we look
at COSIM-GNN1 and GMN, our model requires 1

3 , 1
5 , 1

14 , 1
5

and 1
5 as the time consumption of GMN respectively on BA-

60, BA-100, BA-200, ER-100 and IMDB-L. Thirdly, when
we look at the results among all the models under our frame-
work, it can be found that in four out of the all 5 datasets, our
pooling layer performs better than all other pooling layers,
which demonstrates the effectiveness of our proposed pool-
ing layer.

Generalization Sometimes, due to the limitation of com-
puting resources, we may not be able to train models on very
large graph datasets (graphs that have thousands of nodes)
efficiently. Therefore, it’s interesting and meaningful to ex-
plore whether our model can be efficiently trained on small
graph dataset and then be effectively applied to infer simi-
larity on large graph pairs.

In this paper, we derive two sub-networks from the aca-
demic network of AMiner 1. The first sub-network includes

1https://aminer.org/aminernetwork

Table 6: Ablation study in matching part.

X&I&M X&M M X&I

MSE 0.95 1.02 1.11 2.56
MAE 22.06 23.49 23.76 38.19

Table 7: Accuracy on classification task in %.

Method BA60 BA100 BA200 OpenSSL COIL

GCN-Mean 92.56 91.43 91.38 78.93 73.94
GCN-Max 92.19 91.38 90.94 80.72 72.10
GSimCNN 93.78 98.75 98.94 89.50 80.44

CoSim-Mem 93.22 95.00 99.63 90.45 83.85
CoSim-GNN 97.50 99.38 99.75 94.66 88.30

1,397 authors and 1446 edges representing the coauthor re-
lationship and the second sub-network includes 1324 papers
and 1977 edges representing the citation relationship. We
use these two as the basic graphs, and then use the previ-
ously mentioned trimming method (the trimming steps are
10, 20, ..., 100), to get 198 trimming graphs, which with
the two basic graphs constitute our Aminer dataset. Experi-
mental results are in Table 5. In our experiments, GMN (Li
et al. 2019) can not be deployed to this dataset even with
a 32GB RAM (error in memory overflow). It is found that
CoSim-GNN outperform the other techniques in both MSE
and MAE on the different dataset where graphs have much
more nodes. Also the time consumption of CoSim-GNN is
even lower than embedding models. This results are very
promising in many other application including analysis on
social network and very large biological molecular.

Ablation Study
We conduct an ablation study on BA-100 dataset to validate
the key components that contribute to the improvement of
our COSIM-GNN.

We focus on equation (11) and select different combina-
tion of X, I and M in the concatenation operation. Results
are shown in Table 6. We can see that after removing X
or I or M from COSIM-GNN, the performance will drop,
which proves that all modules are useful for similarity com-
putation. What’s more, it can be seen that if M is removed
from the framework, the performance will drop the most.
The conclusion here is that all the modules contributed to
the framework and the main contribution is brought by M
with the across graph inter-attention.

Graph Pair Classification
We conduct similarity classification experiments (classify
graph paris to “similar” or “dissimilar”) on the four syn-
thetic datasets we generate and two real benchmark datasets:
OpenSSL (Xu et al. 2017) and COIL-DEL (COIL (Riesen
and Bunke 2008)). In Table 7, it can be found that “CoSim”
models achieve the best performance on both synthetic and



real datasets in classification task. Experiments also show
that more pooling layers lead to better GED regression per-
formance only when the node numbers of graphs are large,
i.e. on the BA200 dataset, and here we only use one coars-
ening layer for all graph classification tasks.

Conclusion
In this paper, we propose COSIM-GNN for large graphs
similarity computation, including three stages: encoding,
coarsening and matching. Noticing that the generation of
pooled centroids does not rely on the input graphs among
current state-of-art pooling methods, we provide a novel
pooling method ADAPTIVE POOLING. Thorough experi-
ments are conducted on various baselines, datasets and eval-
uation metrics to demonstrate the scalability, effectiveness
and efficiency of COSIM-GNN as well as the effective-
ness of ADAPTIVE POOLING. COSIM-GNN opens up the
door for learning large graph similarity and the future focus
will be on more efficient pooling and matching mechanisms,
which are able to improve the large graph similarity regres-
sion and classification in this novel framework.
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